

January 2008
WP-03017-001_v01

White Paper

Volume Light

GeForce 8800 Whitepaper

ii WP-03017-001_v01
 January 15, 2008

Document Change History

Version Date Responsible Reason for Change
 January 15, 2008 EM, TS Initial release

Go to sdkfeedback@nvidia.com to provide feedback on Volume Light.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Volume Light

Abstract
Volume Light technique can be considered a simple approximation of real world light
scattering effect. Small particles, sprayed in the air, interact with light beams and
produce different effects like rainbows or sun shafts. Volumetric effects, are
traditionally considered to be computational heavy, but can be approximated in real-
time. In most cases a convincing look can be achieved by a good looking effect that
integrates seamlessly into the scene. Thus, volumetric light is going to be a visual
effect, rather than a physically correct simulation.

GeForce 8800 Whitepaper

2 WP-03017-001_v01
 January 15, 2008

How Volume Light Works
The ultimate goal of our technique is to produce the volumetric look of real light
scattering.

We use a light space shadow map and depth buffer as inputs for a Volume Light
technique. Starting from the near clip plane, we trace the whole scene and
accumulate sampling values. For each sample we determine if it is lit by the source
light or not (based on the shadow map values comparison). Note, that only the lit
samples give a final impact to the resulting pixel color value.

Actually, we need to perform tracing only up to the first intersection with a scene
object. To find those, we use the scene depth buffer.

Drawing a fullscreen quad, we can reconstruct world space position for each
fragment, using the following code:

float sceneDepth = DepthBufferTexture.Sample(samplerPoint,
input.texCoord.xy);

float4 clipPos;
clipPos.x = 2.0 * input.texCoord.x - 1.0;
clipPos.y = -2.0 * input.texCoord.y + 1.0;
clipPos.z = sceneDepth;
clipPos.w = 1.0;

float4 positionWS = mul(clipPos, g_MWorldViewProjectionInv);
positionWS.w = 1.0 / positionWS.w;

positionWS.xyz *= positionWS.w;

Volume Light

DA-0xxxx-001_v01 3
Month day, 2006 NVIDIA CONFIDENTIAL

Tracing the scene, we accumulate lit samples in the buffer, based on the shadow
map comparison

results.

GeForce 8800 Whitepaper

4 WP-03017-001_v01
 January 15, 2008

According to the number of lit samples, we calculate final intensity of screen pixels.
With this, we make the light shafts visible.

The basic scheme works, however we need to introduce some changes, to make it
look better in terms of visual quality and performance.

The first optimization step can be rendering the whole volume light texture at a
coarser resolution. The volume light shafts do not have a lot of internal contrast by
their nature, due to multiple scattering events. Thus, practically, we can downsample
the buffer and still achieve good quality results. Practically, the buffer can be
downsampled by a factor of four for each side. Using higher values can result in too
big loss in details and visible aliasing.

Volume Light

DA-0xxxx-001_v01 5
Month day, 2006 NVIDIA CONFIDENTIAL

Scene Integration
When we want to combine a downsampled variant of volume light texture with the
main scene, we face the aliasing problem. The edges in the coarse texture do not
match those in the original scene, thus we need some preprocessing here.

Original upsampled Volume Light texture

The areas with the highest intensity variations basically appear on the scene edges,
where we have depth discontinuities. We can use this fact and try to make those
look better.

We use a Sobel filter for edge detection, applied to the original depth buffer, to get
as much detail as possible. We blur the upsampled volume light texture image along
the edges to reduce aliasing.

GeForce 8800 Whitepaper

6 WP-03017-001_v01
 January 15, 2008

5x5 filter kernels. Edge direction is defined as float2(Gx, Gy).

Upsampled texture with edge blurring applied

Volume Light

DA-0xxxx-001_v01 7
Month day, 2006 NVIDIA CONFIDENTIAL

Optimized Tracing
In order to make scene tracing faster, we use variable sampling step sizes, based on
the shadow map hierarchy. For the initial map we build a two component MIP-level
chain. For each quad of pixels we calculate a minimum and maximum depth values
and store those in a separate texture. Using a coarse MIP-level, we can try to predict if
all samples referencing the same texel are lit or shadowed.

If several samples are referencing the same texel, we can calculate the maximum light
space depth of those and compare to the minimum value stored in two-component
texture. If the reference value is smaller than those in the texture, all samples are lit.
Thus, we can trivially check several samples at one. The same logic can be used to
determine if all the samples are in shadow.

If we perform a coarse step and both start and end points are lower than a minimum depth value,

than all intermediate fine sample values are lit as well.

We can determine if we can do a coarse step, using the following simple code

stepEndZ = stepStartZ + deltaZ * longStepScale;

float comparison = max(stepStartZ, stepEndZ);
float isLight = comparison < sampleDepthMin;
comparison = min(stepStartZ, stepEndZ);
float isShadow = comparison > sampleDepthMax;

float isLongStep = isLight + isShadow;

GeForce 8800 Whitepaper

8 WP-03017-001_v01
 January 15, 2008

Visual Quality
The current approach assumes, that we have uniform light scattering inside the
volume. But this is not true in real life. The particles distribution is not uniform, plus
multiple scattering decrease the light intensity along the light distribution vector.

In order to make the effect look better, we can try to increase the light intensity,
where the effect is most visible and decrease those for open spaces to avoid a global
foggy look.

We search for discontinuities in light-space shadow map buffer and try to locate holes
in it. To detect the hole, we use a number of passes. First, we use several draw calls
for minimum depth values propagation, from the boundaries, thus if the hole is
relatively small it gets finally filled. The second step uses several passes to propagate
maximum depth values from the new boundaries. If the hole was not “filled”
completely, it almost returns to initial state. Looking at newly occluded areas, we treat
those as holes in the original shadow map and increase the intensity for those.

Volume Light

DA-0xxxx-001_v01 9
Month day, 2006 NVIDIA CONFIDENTIAL

Banding Artifacts
Regular sampling can produce visual banding artifacts. To avoid those, we use
jittering, slightly shifting initial sampling positions in eye-space depth. The actual
amount of those can be precomputed and stored in the noise texture.

Regular sampling(left) and the same scene with a jittering applied(right).

Note, that only the initial position is being shifted, thus, there are no performance
penalties for all other sampling points being used.

GeForce 8800 Whitepaper

10 WP-03017-001_v01
 January 15, 2008

