

14 February 2007

Instancing Tests

Bryan Dudash
bdudash@nvidia.com

8/11/2008 ii

Document Change History
Version Date Responsible Reason for Change
1.0 3/14/08 Bryan Dudash Initial release

Month 2007 1

 Abstract
Instancing is an important tool for direct developers to help squeeze extra
performance out of their complex 3D scene. It makes use of special hardware and
low level driver code to reduce the overhead in drawing multiple copies of the same
vertex buffer. In DirectX 10, the concept of instancing is built into the standard
draw call.

InstancingTests provides a simple toolkit to performance analysis of instancing for
various meshes and on various graphics chips.

Motivation
Our goal with this sample is to provide a easy to use tool for benchmarking various
instancing techniques against straight draw calls. It is not complicated, and can be
customized by the user to run different meshes and/or shader code.

Figure 1:

Left: Screen shot of InstancingTests in action.

Right: Graph generated in Microsoft Excel from CSV data dumped from InstancingTests. This
particular graph shows the behavior of various CPU load levels on ConstantsBased Instancing of a
12 poly mesh as the # of instances varies. The Y axis is frametime. This graphic shows some
interesting spikes as instances increase when under CPU load. Straight blue line is under no load.

 Skinned Instancing

8/11/2008 2

Usage Guide
This whitepaper will function more like a user guide. The concepts behind
instancing are better covered in other texts.

The interface of InstancingTests contains two separate and distinct UI areas. On
the right is the “Interactive” UI. This UI is active when the user is dynamically
moving the camera and changing various options about the scene. The UIs are
shown below.

Option Description Notes

Instances The number of meshes to
render

Upper limit based on multiples
of how many instances can fit
in a constant buffer.

CPU Load Add artificial CPU load in
milliseconds

Busy loop until the time is
passed. Does not sleep.

Instancing? Use instancing or not Off means single draw calls.

Stream
Instancing?

This enables use of
“traditional” vertex stream
based instancing

Off means constants based
instancing

Motion? Simple random oscillation of
all meshes

Forces instance data buffer to
update every frame

Load Mesh File… Specify your own .x mesh to
load

Opens a file dialog

Preset Meshes A handy set of sphere
meshes.

The number after the “_”
indicates the poly count.

Benchmark
Mesh…

Open the benchmark UI Uses the currently loaded
mesh.

 Skinned Instancing

8/11/2008 3

Note
The output filename with the results is generated to be of the following form

InstancingTests_<BenchmarkTag>_i<Max Instances>_l<Max Load>.csv

DirectX 10’s Draw overhead
This tool is designed to allow the user to get an idea of instancing performance
gains and to do performance analysis. However, it is likely that there are some
common results that are worth discussing. Microsoft has removed a lot of runtime
verification of draw calls, and as a result the per-call overhead of Draw*() under
DirectX 10 is considerably lower than under previous DirectX versions.
Nevertheless, there are still cases where using instancing will provide a significant
performance due to reduction of CPU load. In addition, given the fact that GPU
power is increasing faster than CPU power, the benefits of reducing CPU load will
grow. The bottom line is that because each Draw call has some overhead, reducing
the number of Draw calls will always increase efficiency.

Option Description Notes

Enable Motion Set motion on or off for the
benchmark

Max Instances Max for this benchmark run Max capped by global max

Logarithmic
Increments

10 steps from each factor of
10.

1,2…9,10,20…90,100,200…
etc.

Linear Steps Break range from 1 to max
into a # of steps

Only used when not logarithmic

Max Load(ms) Load is also tested across a
range

Always linear

Load Steps: Break load range into # steps Capped by max load

Smoothing Loop # of frames to average over Loop count

Benchmark
(EditBox)

Custom Benchmark Tag Inserted into the output
filename

Run Benchmark Execute with above
parameters

When finished results saved to
a file in CWD.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

