
Lightning

SDK demo explained

© NVIDIA Corporation 2007

Previous Work

Physical simulation using

Dielectric Breakdown Model*

Slow

Convolution with wide

filter

Structure from statistics

Raytracing / volume

traversal

Pregenerated animation

Not flexible

CPU based generation

2/25

*http://gamma.cs.unc.edu/LIGHTNING/

© NVIDIA Corporation 2007

Algorithm

Generate lightning structure

Random fractal L – system in the GS

Multiple iterations of subdivisions to generate more

segments

Animation

Rendering

Constrained billboards

Post processing

Blurring for glow & atmospheric scattering

© NVIDIA Corporation 2007

Generation of Lightning Structure (1)

Jitter Fork

Initial seed segment

Mix and

match

© NVIDIA Corporation 2007

Generation of Lightning Structure (2)

Store line segment as single vertex and render

points

contains also “up” vector for orientation of deviation

GS emits 2 or 3 vertices, depending whether to

jitter or fork

controlled by current (global) subdivision level

Loop with StreamOut & BufferPingPong

5 to 6 subdivisions give good results

Between 64 and 729 segments per seed segment

2 * fork + 3 * jitter looks good

© NVIDIA Corporation 2007

Generation of Lightning Structure (3)

Pseudo random numbers

DX9 style: store as textures

DX10 style: use integer / bit operations

Code from Numerical Recipes
(http://www.library.cornell.edu/nr/cbookcpdf.html)

Ideally would have persistent seed value

Instead use primitive ID as seed value

Variation across primitives

Animation is easy, just add time to seed value

Jumpy appearance, no change in topology

Use base_value * e – decay * subdivision for control

http://www.library.cornell.edu/nr/cbookcpdf.html

© NVIDIA Corporation 2007

Generation of Lightning Structure (4)

© NVIDIA Corporation 2007

Generation of Lightning Structure (4)

© NVIDIA Corporation 2007

Generation of Lightning Structure (4)

© NVIDIA Corporation 2007

Generation of Lightning Structure (4)

© NVIDIA Corporation 2007

Generation of Lightning Structure (4)

© NVIDIA Corporation 2007

Rendering

Rendering into separate off-screen RT, but using

scene depth buffer, (with matching MSAA

settings)

Generate segment aligned and camera aligned

quad with gradient between 2 colors

Vary width based on segment “level”

Gaps between segments

What about segments nearly orthogonal to view

direction

© NVIDIA Corporation 2007

Closing Gaps (2) ─ Starting point

© NVIDIA Corporation 2007

Closing Gaps (2) ─ Starting point

© NVIDIA Corporation 2007

Closing Gaps (1)

Adjacent vertices unknown during subdivision

Cannot use them to adjust / connect quads 

Tried image space growing and shrinking using

dilation and erosion

Works for small resolutions / gaps

Leads to ugly artifacts 

© NVIDIA Corporation 2007

Erosion / Dilation

Dilation

http://www.dca.fee.unicamp.br/dipcourse/html-dip/c9/s4/front-

page.html

Erosion

© NVIDIA Corporation 2007

Opening / Closing

Closing = dilation

followed by erosion

http://www.dca.fee.unicamp.br/dipcourse/html-dip/c9/s4/front-

page.html

Opening = erosion

followed by dilation

© NVIDIA Corporation 2007

Closing Gaps (3) ─ Dilation

© NVIDIA Corporation 2007

Closing Gaps (3) ─ Dilation

© NVIDIA Corporation 2007

Closing Gaps (4) ─ Dilation + Erosion

© NVIDIA Corporation 2007

Closing Gaps (4) ─ Dilation + Erosion

© NVIDIA Corporation 2007

Closing Gaps (5) - Solution

Terminate each quad with a small square with a
semicircular gradient

Quads of neighbors overlap
Leads to overbright spots with additive blending

Max blending deals with that:
fragment_color = max(source, destination)

If glow is used as a postprocessing step, additive
blending works fine, i.e. it looks better

© NVIDIA Corporation 2007

Closing Gaps (6) ─ Terminating Quads

© NVIDIA Corporation 2007

Closing Gaps (6) ─ Terminating Quads

© NVIDIA Corporation 2007

Closing Gaps (7) ─ Max Blending

© NVIDIA Corporation 2007

Closing Gaps (7) ─ Max Blending

© NVIDIA Corporation 2007

Post processing (1)

Down sample to ¼ of width and height

Blurring less dependent of screen resolution

Could have minimal size of downsampled buffer

Faster 

Separable Gaussian blur, e.g. 9 pixels support

Falloff σ separate for RGB to fake atmospheric

scattering

Scale blurred version up and add to unblurred

Small glow

© NVIDIA Corporation 2007

Post Processing (2)

© NVIDIA Corporation 2007

Post Processing (2)

© NVIDIA Corporation 2007

Results

© NVIDIA Corporation 2007

Use cases (1)

Weather effects

Electric discharges

Beams between electrodes

Broken panels, computers

Combination with sparkles

42 kV fences

Nebula / clouds in space games

© NVIDIA Corporation 2007

Use cases (2)

Force lightning

Radial lightning burst, restrict deviation to one plane

Chain lightning

Targets can be tracked by spell caster

Lighting missiles

Use 3D cross as seeding lines

Lightning elementals

Use GS to extract edges of low resolution mesh as seed

lines

© NVIDIA Corporation 2007

Extensions

Apply HDR

Render bright single pixel lines and let HDR resolve deal

with glow

Wide glow

Render dim and very wide bolts following coarse

structure (e.g. 2 subdivision levels)

Add lighting to lightning

Use segment centers of coarse subdivision as point

light sources

