

# GPU-enabled Macromolecular Simulations: Challenges and Opportunities

Michela Taufer<sup>1</sup> with Sandeep Patel<sup>1</sup> and Narayan Ganesan<sup>2</sup>

<sup>1</sup> University of Delaware
 <sup>2</sup> Stevens Institute of Technology



### **MD** Simulations

- MD simulations study the dynamics of individual molecules (molecular positions) as in a motion picture<sup>1</sup>
  - MD simulations are iterative executions of MD steps
  - Given initial atomic positions and velocities, obtain those at later times by integrating ordinary differential equations
- MD simulations complement experiments
  - Critical for atomic-level insights
- Limitations in MD simulations:
  - Length and time scales restricted at the fully atomistic level
- GPUs can provide us with the computing power to cope with large length and time scales

<sup>1</sup> J.M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, Inc. (1992)



### MD on GPUs



Force -> Acceleration -> Velocity -> Position



MD simulation step:

- Each GPU-thread computes forces on single atoms
  - E.g., bond, angle, dihedrals and, nonbond forces
- Forces are added to compute acceleration
- Acceleration is used to update velocities
- Velocities are used to update the positions



# Aspects of Realistic MD Simulation



- Realism of model: the mathematical model reproduces the behavior of the real physical system<sup>1</sup>
- Validity and accuracy of simulation: simulations may suffer from uncertainties in reaching an equilibrium or errors<sup>1</sup>
  - Statistical, numerical, and round-off errors

<sup>1</sup> J.M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, Inc. (1992)

| FLOPS NS/DAY<br>PERFORMANCE |                  |                            | NVE           |            |
|-----------------------------|------------------|----------------------------|---------------|------------|
|                             |                  | MD or                      | F ENSEMBLES   | NPT        |
| SCALABILITY                 |                  | MATHEMATICAL MODEL         | NVT           |            |
|                             | INTERACTI        | ON POTENTIAL               |               |            |
|                             | ASPECTS          | OF REALISTIC MD SIN        | IULATION      |            |
| ENERGY FLUC                 | TUATIONS         | Force Fiel                 | LD            |            |
| VALIDATION AND<br>ACCURACY  |                  | <b>ELECTROSTATIC INTER</b> | ACTIONS       |            |
|                             |                  | PME                        | FREEZING FAST | DEGREES    |
| <b>EMPIRICA</b>             | L VALIDATION     | IMPOSING CONSTRA           | AINTS ON      | OF MOTION  |
| S                           | Single Peptide D |                            | TERATOMIC DI  | STANCES    |
| STUDY PHY                   | SICAL-CHEMI      | CAL SYSTEMS                | SHAKE /       | RATTLE     |
| PROTEIN-M                   | embrane Inter    | RACTION                    |               | RESTRAINTS |

| FLOPS                      | NS/DAY           |                    |               | NVE           |            |
|----------------------------|------------------|--------------------|---------------|---------------|------------|
| PERFOR                     | MANCE            | N                  | <b>/ID</b> OF | ENSEMBLES     | NPT        |
|                            | SCALABILITY      | MATHEMATICAL M     | ODEL          | NVT           |            |
|                            | INTERACTI        | ON POTENTIAL       |               |               |            |
|                            | ASPECTS          | OF REALISTIC M     | D SIM         | ULATION       |            |
| ENERGY FLU                 | ICTUATIONS       | FOF                | RCE FIEL      | D             |            |
| VALIDATION AND<br>ACCURACY |                  | ELECTROSTATIO      | C INTERA      | CTIONS        |            |
|                            |                  |                    | PME           | FREEZING FAST | DEGREES    |
| EMPIRIC                    | CAL VALIDATION   | <b>IMPOSING CO</b> | NSTRA         | INTS ON       | OF MOTION  |
|                            | Single Peptide D | )IFFUSION          | INT           |               | STANCES    |
| STUDY PH                   | HYSICAL-CHEMI    | ICAL SYSTEMS       |               | SHAKE /       | RATTLE     |
| PROTEIN-                   | Membrane Inter   | RACTION            |               |               | RESTRAINTS |

| FLOPS                      | NS/DAY         |                    |               | NVE           |            |
|----------------------------|----------------|--------------------|---------------|---------------|------------|
| PERFORMANCE                |                | N                  | <b>/ID</b> OF | ENSEMBLES     | NPT        |
| SCALABILITY                |                | MATHEMATICAL MO    | ODEL          | NVT           |            |
|                            | INTERACTI      | ON POTENTIAL       |               |               |            |
|                            | ASPECTS        | OF REALISTIC M     |               | IULATION      |            |
| ENERGY FLUCT               | UATIONS        | FOF                | RCE FIEL      | .D            |            |
| VALIDATION AND<br>ACCURACY |                | ELECTROSTATIO      | C INTERA      | ACTIONS       |            |
|                            |                |                    | PME           | FREEZING FAST | DEGREES    |
| EMPIRICAL                  | VALIDATION     | <b>IMPOSING CO</b> | NSTRA         | INTS ON       | OF MOTION  |
| Sı                         | NGLE PEPTIDE D | IFFUSION           | IN            | TERATOMIC DI  | STANCES    |
| STUDY PHYS                 | SICAL-CHEMI    | CAL SYSTEMS        |               | SHAKE / I     | RATTLE     |
| PROTEIN-ME                 | MBRANE INTER   | RACTION            |               |               | RESTRAINTS |

| FLOPS NS/DAY                | NVE                               |                |
|-----------------------------|-----------------------------------|----------------|
| PERFORMANCE                 | <b>MD</b> OF ENSEMBLES            | NPT            |
| SCALABILITY                 | MATHEMATICAL MODEL NVT            |                |
| INTERACT                    | TION POTENTIAL                    |                |
| ASPECTS                     | S OF REALISTIC MD SIMULATION      |                |
| <b>ENERGY FLUCTUATIONS</b>  | Force field                       |                |
| <b>VALIDATION AND</b>       | <b>ELECTROSTATIC INTERACTIONS</b> |                |
| ACCURACY                    | PME FREEZING FAST                 | <b>DEGREES</b> |
| <b>EMPIRICAL VALIDATION</b> | <b>IMPOSING CONSTRAINTS ON</b>    | OF MOTION      |
| SINGLE PEPTIDE              | DIFFUSION INTERATOMIC DI          | STANCES        |
| <b>STUDY PHYSICAL-CHEM</b>  | IICAL SYSTEMS SHAKE /             | RATTLE         |
| PROTEIN-MEMBRANE INTE       | RACTION                           | RESTRAINTS     |



| FLOPS NSEC/DAY              | NVE                               |
|-----------------------------|-----------------------------------|
| PERFORMANCE                 | MD OF ENSEMBLES NPT               |
| SCALABILITY                 | MATHEMATICAL MODEL NVT            |
| INTERACTIO                  | ON POTENTIAL                      |
| ASPECTS                     | OF REALISTIC MD SIMULATION        |
| <b>ENERGY FLUCTUATIONS</b>  | Force field                       |
| <b>VALIDATION AND</b>       | <b>ELECTROSTATIC INTERACTIONS</b> |
| ACCURACY                    | PME FREEZING FAST DEGREES         |
| <b>EMPIRICAL VALIDATION</b> | IMPOSING CONSTRAINTS ON OF MOTION |
| SINGLE PEPTIDE D            | INTERATOMIC DISTANCES             |
| <b>STUDY PHYSICAL-CHEMI</b> | CAL SYSTEMS SHAKE / RATTLE        |
| PROTEIN-MEMBRANE INTER      | ACTION                            |

| FLOPS NS/DAY                | NVE                               |    |
|-----------------------------|-----------------------------------|----|
| PERFORMANCE                 | MD OF ENSEMBLES NPT               |    |
| SCALABILITY                 | MATHEMATICAL MODEL NVT            |    |
| INTERACT                    | ON POTENTIAL                      |    |
| ASPECTS                     | OF REALISTIC MD SIMULATION        |    |
| <b>ENERGY FLUCTUATIONS</b>  | Force field                       |    |
| VALIDATION AND              | <b>ELECTROSTATIC INTERACTIONS</b> |    |
| ACCURACY                    | PME FREEZING FAST DEGREES         |    |
| <b>EMPIRICAL VALIDATION</b> | IMPOSING CONSTRAINTS ON OF MOTIO  | N  |
| SINGLE PEPTIDE              | INTERATOMIC DISTANCES             |    |
| STUDY PHYSICAL-CHEM         | CAL SYSTEMS SHAKE / RATTLE        |    |
| PROTEIN-MEMBRANE INTE       | RACTION                           | ٢S |

# FEN ZI

#### *Yun Dong de FEN ZI = Moving MOLECULES*

- FEN ZI enables GPU-based MD simulations in NVT, NVE, and NPT<sup>1</sup> ensembles and energy minimization<sup>2</sup>
  - MD forces are all computed on GPU
- Force field used: CHARMM force field<sup>3</sup>
- Lennard-Jones interactions:
  - Switching or shifting
- Long distance electrostatic interactions:
  - Ewald summation method<sup>5</sup>
  - Reaction field<sup>6</sup>
- Solvent:
  - Explicit or implicit model
  - TIP3 water model
  - Flexible SPC/Fw water model<sup>4</sup>
- <sup>1</sup>H. C. Andersen, J. Chem. Phys., 72 (1980) 2384-2393
- <sup>2</sup> M. C. Payne, et al., Rev. Mod. Phys., 64 (1992) 1045-1097
- <sup>3</sup> B. R. Brooks, et al., J. Comp. Chem., 4 (1983) 187{217
- <sup>4</sup> Y. Wu, et al., J. Chem. Phys., 124, 024503, 2006
- <sup>5</sup> U. Essmann, et al., J. Chem. Phys., 103 (1995) 8577 10
- <sup>6</sup>G. Hummer, et al., J. Phys. Condens. Matter (1994)

| FLOPS NS/DAY                    |                    | ٢                   | VE       |            |
|---------------------------------|--------------------|---------------------|----------|------------|
| PERFORMANCE                     | N                  | <b>ID OF ENSEME</b> | BLES     | NPT        |
| SCALABILITY                     | MATHEMATICAL M     | ODEL                | IVT      |            |
| INTERACT                        | TION POTENTIAL     |                     |          |            |
| ASPECT                          | S OF REALISTIC M   | <b>D</b> SIMULATION |          |            |
| <b>ENERGY FLUCTUATIONS</b>      | For                | RCE FIELD           |          |            |
| <b>VALIDATION AND</b>           | ELECTROSTATIO      |                     |          |            |
| ACCURACY                        |                    | PME FREEZING        | g fast d | EGREES     |
| <b>EMPIRICAL VALIDATION</b>     | <b>IMPOSING CO</b> | NSTRAINTS ON        |          | OF MOTION  |
| SINGLE PEPTIDE                  | DIFFUSION          | INTERATOM           |          | ANCES      |
| STUDY PHYSICAL-CHEMICAL SYSTEMS |                    | SH/                 | AKE / RA | TTLE       |
| PROTEIN-MEMBRANE INTI           | ERACTION           |                     |          | RESTRAINTS |

### Short and Long Range Interactions

- Each iteration computes forces on each particle due to: Bonded interactions <sup>1</sup>
  - Bonds
  - Angles (ANGLes, UREY-b)
  - Dihedrals
  - Improper

Non-bonded interactions <sup>1</sup>

- Van der Waals
- Electrostatic with PME
  - Direct space energy
  - Reciprocal space energy
  - $\circ$  Self energy

$$V_{LJ} = \sum_{i,j}^{\text{pairs}} \left( 4\epsilon_{ij} \left[ \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] \right)$$

$$E_{\text{dir}} = \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{q_i q_j \text{erfc}(\beta r_{ij})}{r_{ij}}$$

$$E_{\text{rec}} = \frac{1}{2\pi V} \sum_{\vec{m} \neq 0} \frac{\exp(-\pi^2 \vec{m}^2 / \beta^2)}{\vec{m}^2} S(\vec{m}) S(-\vec{m})$$

$$E_{\text{corr}} = -\frac{1}{2} \sum_{(i,j)\in\text{Excl}} \frac{q_i q_j \text{erf}(\beta |r_i - r_j|)}{|r_i - r_j|} - \frac{\beta}{\sqrt{\pi}} \sum_{i=1} N q_i^2$$

<sup>1</sup> J. Phys. Chem. B, 1998, 102, 3586; J. Comput. Chem., 2004, 25, 1400; J. Comput. Chem., 2000, 21, 86, ibid. 105ff

### Interaction Implementation on GPUs

- Bond-, angle-, and dihedral interactions handled by a kernel
- Bond-, angle-, and dihedral lists never require updating
  - Constructed once on CPU and copied to GPU
- Non-bonded interactions (i.e., Lennard-Jones and direct space electrostatic) are handled by two kernels
  - One for building non-bond neighbor list and one for computing interactions



#### Cell-based neighbor list

- Divide the domain into equal cells of size = cutoff r<sub>cut</sub>
- Search only in current cell and 26 adjacent cells for neighboring atoms
- List only needs to be updated when atoms move more than buffer cutoff r<sub>list</sub> > r<sub>cut</sub>

#### **Electrostatic Interactions**

• Divide interactions into short range (Direct Space) and long range (Reciprocal Space)





### Steps in SPME

#### Smooth Particle Mesh Ewald (SPME)



# **Charge Spreading**

- Each charge spread on a 4x4x4 grid points in 3-D<sup>1</sup>
  - Grid spacing 1 A by a cardinal B-Spline of order 4
  - Create a 3 dimensional Charge Matrix "Q"
- Mesh-based charge density
  - Approximation by sum of charges at each grid point
  - Multiple charges can influence a single lattice point



 $x_i y_i z_i$ : position of the i<sup>th</sup> charge;  $k_1 k_2 k_3$ : index of the lattice point <sup>1</sup> Essm







### CPU vs. GPU Charge Spreading



- Charge spreading on GPU can be parallelized easily by the grid points instead of the atoms
- Each thread works on a single or a set of grid points

### Efficient and Scalable Charge Spreading



- Our charge spreading on GPUs is done by maintaining a list of charges within a 4x4x4 neighborhood of each lattice point
- The lattice neighbor list is built only once and efficiently updated throughout the rest of the simulation



### Efficient and Scalable Charge Spreading

- When a charge moves from location 2 to 2', the neighborhood list of associated lattice points needs to be updated
- We update the neighborhood lists in parallel
  - A 1-to-1 mapping between lattice points gaining the charge and lattice points losing the charge is used
  - Threads of points losing the charge update list of points gaining the charge



| FLOPS                      | NS/DAY         |                    |               | NVE           |            |
|----------------------------|----------------|--------------------|---------------|---------------|------------|
| PERFORMANCE                |                | N                  | <b>/ID</b> OF | ENSEMBLES     | NPT        |
| SCALABILITY                |                | MATHEMATICAL MO    | ODEL          | NVT           |            |
|                            | INTERACTI      | ON POTENTIAL       |               |               |            |
|                            | ASPECTS        | OF REALISTIC M     |               | IULATION      |            |
| ENERGY FLUCT               | UATIONS        | FOF                | RCE FIEL      | .D            |            |
| VALIDATION AND<br>ACCURACY |                | ELECTROSTATIO      | C INTERA      | ACTIONS       |            |
|                            |                |                    | PME           | FREEZING FAST | DEGREES    |
| EMPIRICAL                  | VALIDATION     | <b>IMPOSING CO</b> | NSTRA         |               | OF MOTION  |
| Sı                         | NGLE PEPTIDE D | IFFUSION           | IN            | TERATOMIC DI  | STANCES    |
| STUDY PHYS                 | SICAL-CHEMI    | CAL SYSTEMS        |               | SHAKE / I     | RATTLE     |
| PROTEIN-ME                 | MBRANE INTER   | RACTION            |               |               | RESTRAINTS |



# **MD of Ensembles**

- MD can simulate in the NVE, NVT, or NPT ensembles
- Microcanonical or constant NVE
  - Conventional MD simulation conserving total energy
- There exists different algorithms to implement temperature and pressure control mechanisms
- Canonical or constant NVT
  - Scaling velocities:
    - o temperature depends on velocities
    - o correct the velocities every 20,000 steps to keep desired temperature
- Isothermal-isobaric or constant NPT
  - Using a simple Nosé-Hoover style isothermal-isobaric molecular dynamics<sup>1</sup>

<sup>1</sup> Kalibaeva G. et al., *Molecular Physics* 101(6): 765-778, 2002

| FLOPS NS/DAY                | NVE                               |                |
|-----------------------------|-----------------------------------|----------------|
| PERFORMANCE                 | <b>MD</b> OF ENSEMBLES            | NPT            |
| SCALABILITY                 | MATHEMATICAL MODEL NVT            |                |
| INTERACT                    | TION POTENTIAL                    |                |
| ASPECTS                     | S OF REALISTIC MD SIMULATION      |                |
| <b>ENERGY FLUCTUATIONS</b>  | Force field                       |                |
| VALIDATION AND              | <b>ELECTROSTATIC INTERACTIONS</b> |                |
| ACCURACY                    | PME FREEZING FAST                 | <b>DEGREES</b> |
| <b>EMPIRICAL VALIDATION</b> | <b>IMPOSING CONSTRAINTS ON</b>    | OF MOTION      |
| SINGLE PEPTIDE              | DIFFUSION INTERATOMIC DI          | STANCES        |
| <b>STUDY PHYSICAL-CHEM</b>  | IICAL SYSTEMS SHAKE /             | RATTLE         |
| PROTEIN-MEMBRANE INTE       | RACTION                           | RESTRAINTS     |



### **Cell Membranes**





Lipid membranes are responsible for physiological functions and dysfunctions



# **DMPC Lipid Bilayers**



#### Large system

#### Medium system

#### Small system



# **DMPC Lipid Bilayers: Simulations (I)**

Small system:

- Number of atoms: 17,004
  - 14,096 bonds
  - 19,108 angles
  - 22,536 dihedrals
- Size: 46.8A x 46.8A x 76.0A
- Water molecules: 2,836
- Temperature: 298 K





# **DMPC Lipid Bilayers: Simulations (II)**

Medium system:

- Number of atoms: 68,484
  - 56,696 bonds
  - 76,588 angles
  - 360,576 dihedrals
- Size: 93.6 A x 93.6A x 76.0A
- Water molecules: 11,500
- Temperature: 298 K





# **DMPC Lipid Bilayers: Simulations (III)**

Large system:

- Number of atoms: 273,936
  - 226,784 bonds
  - 306,352 angles
  - 360,576 dihedrals
- Size: 187.2A X 187.2A X 76.0A
- Water molecules: 46,863
- Temperature: 298 K





#### Accuracy: Comparison with Other Codes



- Several energies fluctuate around same average values
- Before equilibrium is reached, energy drifting is due to • different thermostats, i.e., Langevin vs. velocity reassignment 28

#### Accuracy: Comparison with Other Codes

3ns of NVT MD simulation with 1fs step size: CHARMM on single core, 64 bits; FENZI on GTX 480, 32 bits



# Accuracy: Energy Fluctuations

- A plot of the energy fluctuations versus time step size should follow an approximately logarithmic trend<sup>1</sup>
- FEN ZI fluctuations are proportional to time step size for large time step size
  - Larger than 0.5 fs
- A different behavior for step size less than 0.5 fs is consistent with results previously presented and discussed in other work <sup>2</sup>

<sup>1</sup> Allen and Tildesley, Oxford: Clarendon Press, (1987) <sup>2</sup> Bauer et al., J. Comput. Chem. 32(3): 375 – 385, 2011



- ---- FEN ZI double prec., cuton = 8, cutoff=9, cutnb=11
- ---- CHARMM double prec., cuton = 8, cutoff=9, cutnb=14

# **Empirical Analysis**

- We study the structural and electrostatic properties:
  - Mass density profiles of various chemical groups within the membrane
  - Mass density of water along the membrane
  - Electron and charge density profiles along the membrane
  - Surface potential due to water and lipid
  - Order parameters for the lipid tails
- We find that simulation results match experiment observations across the various membrane sizes<sup>1</sup>
- We surprisingly find that the structural properties are robust across the various membrane sizes<sup>1</sup>
  - Atomic number density, electron density, and electrostatic potentials remain consistently equivalent across the small, medium, and very large system



#### FEN ZI Analysis: Small Membrane

100 ns of FENZI simulation



- Mass density histograms matches the membrane position
- Surface potential is 0.9 V as expected in a lipid membrane<sup>1</sup>



#### FEN ZI Analysis: Large Membrane

20 ns of FENZI simulation



 Both order parameters and water dipole moment matched expected experiment results in a lipid membrane<sup>1</sup>



| FLOPS NSEC/DAY              | NVE                               |
|-----------------------------|-----------------------------------|
| PERFORMANCE                 | MD OF ENSEMBLES NPT               |
| SCALABILITY                 | MATHEMATICAL MODEL NVT            |
| INTERACTIO                  | ON POTENTIAL                      |
| ASPECTS                     | OF REALISTIC MD SIMULATION        |
| <b>ENERGY FLUCTUATIONS</b>  | Force field                       |
| <b>VALIDATION AND</b>       | <b>ELECTROSTATIC INTERACTIONS</b> |
| ACCURACY                    | PME FREEZING FAST DEGREES         |
| <b>EMPIRICAL VALIDATION</b> | IMPOSING CONSTRAINTS ON OF MOTION |
| SINGLE PEPTIDE D            | INTERATOMIC DISTANCES             |
| <b>STUDY PHYSICAL-CHEMI</b> | CAL SYSTEMS SHAKE / RATTLE        |
| PROTEIN-MEMBRANE INTER      | ACTION                            |



#### Performance: FEN ZI vs. CHARMM



- Parallel MPI CHARMM optimized for and executed on the cores of a single node (i.e., 2.6 GHz, dual quad-core, 8GB memory Intel Xeon)
- FEN ZI optimized for and executed on one GTX 480 and C2050 GPUs (Fermi) using single precision and CUDA 3.1

FEN ZI speedup for a single-precision MD simulation on one GPU is up to 10X the same simulation on one 8-core, double-precision node<sup>1</sup>





#### **FEN ZI Scalability**

- Simulations of three lipid bilayer membranes (DMPC) with three different sizes, each four time larger than the previous
- FEN ZI simulations
  were performed on a
  GTX 480 GPU and a
  C2050 GPU (Fermi)

# FEN ZI allows us to simulate larger membranes, larger than simple regions, over longer time interval in significant turnaround times<sup>1</sup>

| FLOPS NS/DAY                | NVE                               |    |
|-----------------------------|-----------------------------------|----|
| PERFORMANCE                 | MD OF ENSEMBLES NPT               |    |
| SCALABILITY                 | MATHEMATICAL MODEL NVT            |    |
| INTERACT                    | ON POTENTIAL                      |    |
| ASPECTS                     | OF REALISTIC MD SIMULATION        |    |
| <b>ENERGY FLUCTUATIONS</b>  | Force field                       |    |
| VALIDATION AND              | <b>ELECTROSTATIC INTERACTIONS</b> |    |
| ACCURACY                    | PME FREEZING FAST DEGREES         |    |
| <b>EMPIRICAL VALIDATION</b> | IMPOSING CONSTRAINTS ON OF MOTIO  | N  |
| SINGLE PEPTIDE              | INTERATOMIC DISTANCES             |    |
| STUDY PHYSICAL-CHEM         | CAL SYSTEMS SHAKE / RATTLE        |    |
| PROTEIN-MEMBRANE INTE       | RACTION                           | ٢S |

#### **Protein-Membrane Interaction**

- Protein molecules are absorbed by cells walls constituted by membranes
- Interaction of proteins with membranes is biologically relevant
- Inject a protein molecule into the membrane system
- Identify types of proteins that are easily absorbed
- Study pathological conditions and behaviors



WALP16 peptide penetrating DMPC 2x2

<sup>1</sup> Taufer M. et al., CiSE (2012) – In preparation



#### Multiple CPUs vs. Single GPU



Projected performance of an 8-core node of a cluster running CHARMM

Performance of FENZI on one GTX 480

### **Single Peptide Diffusion**



- Study the kinematic behavior of the WALP16 peptide on the surface of the membrane
- Larger membrane size and timescale on GPU enables us to observe the scooting behavior of the system:
  - Red regions indicate scooting while outside the membrane
  - Blue regions indicate scooting while penetrated

<sup>1</sup> Taufer M. et al., CiSE (2012) – In preparation



# Summary

- GPUs enable unprecedented levels of system size being simulated in unprecedented turnaround times
- Realistic simulations of molecular systems can be implemented on GPUs while preserving model realism and simulation validity
- MD simulations with FEN ZI outline:
  - The structural properties in membranes are robust across the various simulation sizes
  - The diffusion properties of a single peptide when scooting above the membrane surface

GPU computing with its challenges and opportunities occupies a solid place in the molecular computational science community



### Acknowledgments





#### Related work:

Ganesan et al., JCC 2011 Bauer et al., JCC 2011 Davis et al., BICoB 2009 **Contact:** 

taufer@udel.edu, sapatel@udel.edu

#### Sponsors:



# **Explore GTC On-Demand**



#### www.gputechconf.com