
1

Inside Kepler
World’s Fastest and Most Efficient Accelerator

Julia Levites, Sr. Product Manager, NVIDIA

Stephen Jones, Sr. Solution Architect, NVIDIA

Titan: World’s Fastest Supercomputer
18,688 Tesla K20X GPUs

27 Petaflops Peak: 90% of Performance from GPUs

17.59 Petaflops Sustained Performance on Linpack

Tesla K20X Tesla K20

CUDA Cores 2688 2496

Peak Double Precision
Peak DGEMM

1.32 TF
1.22 TF

1.17 TF
1.10 TF

Peak Single Precision
Peak SGEMM

3.95 TF
2.90 TF

3.52 TF
2.61 TF

Memory Bandwidth 250 GB/s 208 GB/s

Memory size 6 GB 5 GB

Total Board Power 235W 225W

Tesla K20 Family: 3x Faster Than Fermi

0

0.25

0.5

0.75

1

1.25

Xeon E5-2690 Tesla M2090 Tesla K20X

T
F
L
O

P
S

.18 TFLOPS

.43 TFLOPS

1.22 TFLOPS
Double Precision FLOPS (DGEMM)

Tesla K20X

Tesla K20 over Fermi Acceleration
Based on customer feedback

2.2x

2.2x

2.4x

2.5x

2.8x

3.5x

0 0.5 1 1.5 2 2.5 3 3.5 4

Electromagnetism Prop.

Stencil Convolution

Molecular Dynamics

Nbody

High Energy Physics

Boltzman Method
National Research

Council , Italy

CP³-Origins,

Syddansk U.

Universidade

Federal Fluminense

Moscow Inst. of

Physics & Tech.

Kazan Federal

University

KAUST

What customers say about K20

Research Scientist

Oreste Villa, Antonino Tumeo

”

Tesla K20 GPU is 2.3x faster than Tesla M2070, and no change was
required in our code! ” I. Senocak, Associate Professor in Boise State Univ

“

The K20 test cluster was an excellent opportunity for us to run
Turbostream. Right out of the box, we saw a 2x speed up.

G. Pullan, Lecturer, University of Cambridge ”
“

65% of the users who tried K20 got 2x or more speedup with

K20 vs. Fermi without any code optimizations.

Better results – recompile code for Kepler

Fermi code runs on Kepler as is

Optimizing for Kepler

Best performance - tune code for Kepler
http://developer.nvidia.com/cuda/cuda-toolkit

Sign up for FREE K20 GPU Test

Drive on remotely hosted clusters

www.nvidia.com/GPUTestDrive

Try your code or GPU accelerated

application today

Test Drive K20 GPUs!
Experience The Acceleration

Test Drive K20 GPUs!
Experience The Acceleration

Registration is Open!
March 18-21, 2013 | San Jose, CA

Four days

Three keynotes

300+ sessions

One day of pre-conference
developer tutorials

100+ research posters

Lots of networking events
and opportunities

Visit www.gputechconf.com for more info.

Try your code or GPU accelerated

application today

Sign up for FREE K20 GPU Test Drive on

remotely hosted clusters

www.nvidia.com/GPUTestDrive

http://www.gputechconf.com/

Inside Kepler
World’s Fastest and Most Efficient Accelerator

Stephen Jones, Sr. Solution Architect, NVIDIA

The Kepler GK110 GPU

Efficiency

Programmability

Performance

Kepler GK110 Block Diagram

Architecture

7.1B Transistors

15 SMX units

> 1 TFLOP FP64

1.5 MB L2 Cache

384-bit GDDR5

Kepler GK110 SMX vs Fermi SM

SMX Balance of Resources

Resource Kepler GK110 vs

Fermi

Floating point throughput 2-3x

Max Blocks per SMX 2x

Max Threads per SMX 1.3x

Register File Bandwidth 2x

Register File Capacity 2x

Shared Memory Bandwidth 2x

Shared Memory Capacity 1x

New ISA Encoding: 255 Registers per Thread

Fermi limit: 63 registers per thread
A common Fermi performance limiter

Leads to excessive spilling

Kepler : Up to 255 registers per thread
Especially helpful for FP64 apps

Spills are eliminated with extra registers

New High-Performance SMX Instructions

SHFL (shuffle) -- Intra-warp data exchange Compiler-generated,

high performance

instructions:

 bit shift

 bit rotate

 fp32 division

 read-only cache ATOM -- Broader functionality, Faster

New Instruction: SHFL

Data exchange between threads within a warp

Avoids use of shared memory

One 32-bit value per exchange

4 variants:

h d f e a c c b g h a b c d e f c d e f g h a b c d a b g h e f

a b c d e f g h

Indexed

any-to-any

Shift right to nth

neighbour

Shift left to nth

neighbour

Butterfly (XOR)

exchange

__shfl() __shfl_up() __shfl_down() __shfl_xor()

SHFL Example: Warp Prefix-Sum

__global__ void shfl_prefix_sum(int *data)

{

 int id = threadIdx.x;

 int value = data[id];

 int lane_id = threadIdx.x & warpSize;

 // Now accumulate in log2(32) steps

 for(int i=1; i<=width; i*=2) {

 int n = __shfl_up(value, i);

 if(lane_id >= i)

 value += n;

 }

 // Write out our result

 data[id] = value;

}

3 8 2 6 3 9 1 4

3 11 10 8 9 12 10 5

3 11 13 19 19 20 19 17

3 11 13 19 21 31 32 36

n = __shfl_up(value, 1)

n = __shfl_up(value, 2)

n = __shfl_up(value, 4)

value += n

value += n

value += n

ATOM instruction enhancements

Added int64 functions to match
existing int32

2 – 10x performance gains
Shorter processing pipeline

More atomic processors

Slowest 10x faster

Fastest 2x faster

Atom Op int32 int64

add x x

cas x x

exch x x

min/max x X

and/or/xo

r

x X

High Speed Atomics Enable New Uses

Atomics are now fast enough to use within inner loops
Example: Data reduction (sum of all values)

1. Divide input data array into N sections

2. Launch N blocks, each reduces one

section

3. Output is N values

4. Second launch of N threads, reduces

outputs to single value

Without Atomics

High Speed Atomics Enable New Uses

Atomics are now fast enough to use within inner loops
Example: Data reduction (sum of all values)

1. Divide input data array into N sections

2. Launch N blocks, each reduces one

section

3. Write output directly via atomic.

No need for second kernel launch.

With Atomics

Texture performance

Texture :
Provides hardware accelerated filtered sampling of
data (1D, 2D, 3D)

Read-only data cache holds fetched samples

Backed up by the L2 cache

SMX vs Fermi SM :
4x filter ops per clock

4x cache capacity

Tex

SMX

L2

Tex Tex Tex

Read-only

Data Cache

Texture Cache Unlocked

Added a new path for compute
Avoids the texture unit

Allows a global address to be fetched and cached

Eliminates texture setup

Why use it?
Separate pipeline from shared/L1

Highest miss bandwidth

Flexible, e.g. unaligned accesses

Managed automatically by compiler
“const __restrict” indicates eligibility

Tex

SMX

L2

Tex Tex Tex

Read-only

Data Cache

const __restrict Example

__global__ void saxpy(float x, float y,
 const float * __restrict input,
 float * output)
{
 size_t offset = threadIdx.x +
 (blockIdx.x * blockDim.x);

 // Compiler will automatically use texture
 // for "input"
 output[offset] = (input[offset] * x) + y;
}

Annotate eligible kernel
parameters with
const __restrict

Compiler will automatically
map loads to use read-only
data cache path

Kepler GK110 Memory System Highlights

Efficient memory controller for GDDR5
Peak memory clocks achievable

More L2
Double bandwidth

Double size

More efficient DRAM ECC Implementation
DRAM ECC lookup overhead reduced by 66%
(average, from a set of application traces)

Improving Programmability

Dynamic

Parallelism
Occupancy

Simplify CPU/GPU Divide

Library Calls from Kernels

Batching to Help Fill GPU

Dynamic Load Balancing

Data-Dependent Execution

Recursive Parallel Algorithms

What is Dynamic Parallelism?

The ability to launch new grids from the GPU
Dynamically

Simultaneously

Independently

CPU GPU CPU GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

CPU GPU CPU GPU

What Does It Mean?

Autonomous, Dynamic Parallelism GPU as Co-Processor

Data-Dependent Parallelism

CUDA Today CUDA on Kepler

Computational

Power allocated to

regions of interest

Dynamic Work Generation

Initial Grid

Statically assign conservative

worst-case grid

Dynamically assign performance

where accuracy is required

Dynamic Grid

Fixed Grid

Batched & Nested Parallelism

Algorithm flow simplified for illustrative purposes

CPU-Controlled Work Batching
CPU programs limited by single point of
control

Can run at most 10s of threads

CPU is fully consumed with controlling
launches

CPU Control Thread

dgetf2 dgetf2 dgetf2

CPU Control Thread

dswap dswap dswap

dtrsm dtrsm dtrsm

dgemm dgemm dgemm

CPU Control Thread

Multiple LU-Decomposition, Pre-Kepler

CPU Control Thread

CPU Control Thread

Batched & Nested Parallelism

Algorithm flow simplified for illustrative purposes

Batching via Dynamic Parallelism
Move top-level loops to GPU

Run thousands of independent tasks

Release CPU for other work

CPU Control Thread

CPU Control Thread

GPU Control

Thread

dgetf2

dswap

dtrsm

dgemm

GPU Control

Thread

dgetf2

dswap

dtrsm

dgemm

GPU Control

Thread

dgetf2

dswap

dtrsm

dgemm

Batched LU-Decomposition, Kepler

Grid Management Unit

Work Distributor

32 active grids

Stream Queue Mgmt

C

B

A

R

Q

P

Z

Y

X

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

SMX SMX SMX SMX SM SM SM SM

Work Distributor

16 active grids

Stream Queue Mgmt

C

B

A

Z

Y

X

R

Q

P

CUDA

Generated

Work

Fermi Kepler GK110

Fermi Concurrency

Fermi allows 16-way concurrency

Up to 16 grids can run at once

But CUDA streams multiplex into a single queue

Overlap only at stream edges

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Hardware Work Queue

A--B--C P--Q--R X--Y--Z

Kepler Improved Concurrency

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z

Kepler allows 32-way concurrency
One work queue per stream

Concurrency at full-stream level

No inter-stream dependencies

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes

Shared GPU

E F D C B A

Hyper-Q: Simultaneous Multiprocess

E F D C B A

CPU Processes

Shared GPU

Without Hyper-Q

Time

100

50

0

G
P
U

 U
ti

li
z
a
ti

o
n
 %

A B C D E F

With Hyper-Q

Time

100

50

0

G
P
U

 U
ti

li
z
a
ti

o
n
 %

A

A
A

B

B
B

C

C

C

D

D

D

E

E

E

F

F

F

Whitepaper: http://www.nvidia.com/object/nvidia-kepler.html

