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Titan: World’s Fastest Supercomputer 
18,688 Tesla K20X GPUs 

27 Petaflops Peak: 90% of Performance from GPUs 

17.59 Petaflops Sustained Performance on Linpack 



Tesla K20X Tesla K20 

# CUDA Cores 2688 2496 

Peak Double Precision 
Peak DGEMM 

1.32 TF 
1.22 TF 

1.17 TF 
1.10 TF 

Peak Single Precision 
Peak SGEMM 

3.95 TF 
2.90 TF 

3.52 TF 
2.61 TF 

Memory Bandwidth 250 GB/s 208 GB/s 

Memory size 6 GB 5 GB 

Total Board Power 235W 225W 

Tesla K20 Family: 3x Faster Than Fermi 
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Tesla K20 over Fermi Acceleration 
Based on customer feedback 
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What customers say about K20 

Research Scientist 

Oreste Villa, Antonino Tumeo 

” 

Tesla K20 GPU is 2.3x faster than Tesla M2070, and no change was  
required in our code! ” I. Senocak, Associate Professor in Boise State Univ 

“ 

The K20 test cluster was an excellent opportunity for us to run 
Turbostream. Right out of the box, we saw a 2x speed up. 

G. Pullan, Lecturer, University of Cambridge ” 
“ 

65% of the users who tried K20 got 2x or more speedup with 

K20 vs. Fermi without any code optimizations.  



Better results – recompile code for Kepler 

Fermi code runs on Kepler as is  

Optimizing for Kepler 

Best performance - tune code for Kepler 
http://developer.nvidia.com/cuda/cuda-toolkit  



Sign up for FREE K20 GPU Test 

Drive on remotely hosted clusters 

www.nvidia.com/GPUTestDrive 

Try your code or GPU accelerated 

application today 

Test Drive K20 GPUs! 
Experience The Acceleration  



Test Drive K20 GPUs! 
Experience The Acceleration  

Registration is Open!  
March 18-21, 2013 | San Jose, CA 

 

Four days 

Three keynotes 

300+ sessions 

One day of pre-conference 
developer tutorials 

100+ research posters 

Lots of networking events 
and opportunities 

 
 
 
 

Visit www.gputechconf.com for more info. 

 

Try your code or GPU accelerated 

application today 

Sign up for FREE K20 GPU Test Drive on 

remotely hosted clusters 

www.nvidia.com/GPUTestDrive 

http://www.gputechconf.com/
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The Kepler GK110 GPU 

Efficiency 

Programmability 

Performance 



Kepler GK110 Block Diagram 

Architecture 

7.1B Transistors 

15 SMX units 

> 1 TFLOP FP64 

1.5 MB L2 Cache 

384-bit GDDR5 



Kepler GK110 SMX vs Fermi SM 



SMX Balance of Resources 

Resource Kepler GK110 vs 

Fermi 

Floating point throughput 2-3x 

Max Blocks per SMX 2x 

Max Threads per SMX 1.3x 

Register File Bandwidth 2x 

Register File Capacity 2x 

Shared Memory Bandwidth 2x 

Shared Memory Capacity 1x 



New ISA Encoding: 255 Registers per Thread 

Fermi limit: 63 registers per thread 
A common Fermi performance limiter 

Leads to excessive spilling 
 

Kepler : Up to 255 registers per thread 
Especially helpful for FP64 apps 

Spills are eliminated with extra registers 

 



New High-Performance SMX Instructions 

SHFL (shuffle) -- Intra-warp data exchange  Compiler-generated, 

high performance 

instructions: 

 

 bit shift 

 bit rotate 

 fp32 division 

 read-only cache ATOM -- Broader functionality, Faster 



New Instruction: SHFL 

Data exchange between threads within a warp 
 

Avoids use of shared memory 

One 32-bit value per exchange 

4 variants: 

 

h d f e a c c b g h a b c d e f c d e f g h a b c d a b g h e f 

a b c d e f g h 

Indexed 

any-to-any 

Shift right to nth 

neighbour 

Shift left to nth 

neighbour 

Butterfly (XOR) 

exchange 

__shfl() __shfl_up() __shfl_down() __shfl_xor() 



SHFL Example: Warp Prefix-Sum 

__global__ void shfl_prefix_sum(int *data) 

{ 

 int id = threadIdx.x; 

 int value = data[id]; 

 int lane_id = threadIdx.x & warpSize; 

 

 // Now accumulate in log2(32) steps 

 for(int i=1; i<=width; i*=2) { 

  int n = __shfl_up(value, i); 

  if(lane_id >= i) 

   value += n; 

    } 

 

    // Write out our result 

    data[id] = value; 

} 

 

3 8 2 6 3 9 1 4 

3 11 10 8 9 12 10 5 

3 11 13 19 19 20 19 17 

3 11 13 19 21 31 32 36 

n = __shfl_up(value, 1) 

n = __shfl_up(value, 2) 

n = __shfl_up(value, 4) 

value += n 

value += n 

value += n 



ATOM instruction enhancements 

Added int64 functions to match 
existing int32 

 

2 – 10x performance gains 
Shorter processing pipeline 

More atomic processors 

Slowest 10x faster 

Fastest 2x faster 

 

Atom Op int32 int64 

add x x 

cas x x 

exch x x 

min/max x X 

and/or/xo

r 

x X 



High Speed Atomics Enable New Uses 

Atomics are now fast enough to use within inner loops 
Example: Data reduction (sum of all values) 

1. Divide input data array into N sections 

 

2. Launch N blocks, each reduces one 

section 

 

3. Output is N values 

 

4. Second launch of N threads, reduces 

outputs to single value 

Without Atomics 



High Speed Atomics Enable New Uses 

Atomics are now fast enough to use within inner loops 
Example: Data reduction (sum of all values) 

1. Divide input data array into N sections 

 

2. Launch N blocks, each reduces one 

section 

 

3. Write output directly via atomic. 

No need for second kernel launch. 

With Atomics 



Texture performance 

Texture : 
Provides hardware accelerated filtered sampling of 
data (1D, 2D, 3D) 

Read-only data cache holds fetched samples 

Backed up by the L2 cache 

 

SMX vs Fermi SM :  
4x filter ops per clock 

4x cache capacity 

Tex 

SMX 

L2 

Tex Tex Tex 

Read-only 

Data Cache 



Texture Cache Unlocked 

Added a new path for compute 
Avoids the texture unit 

Allows a global address to be fetched and cached 

Eliminates texture setup 

Why use it? 
Separate pipeline from shared/L1 

Highest miss bandwidth 

Flexible, e.g. unaligned accesses 

Managed automatically by compiler 
“const __restrict” indicates eligibility 

 

Tex 

SMX 

L2 

Tex Tex Tex 

Read-only 

Data Cache 



const __restrict Example 

 
__global__ void saxpy(float x, float y, 
                const float * __restrict input, 
                float * output) 
{ 
    size_t offset = threadIdx.x + 
                    (blockIdx.x * blockDim.x); 
 
    // Compiler will automatically use texture 
    // for "input" 
    output[offset] = (input[offset] * x) + y; 
} 

 

Annotate eligible kernel 
parameters with 
const __restrict 
 

Compiler will automatically 
map loads to use read-only 
data cache path 
 



Kepler GK110 Memory System Highlights 

Efficient memory controller for GDDR5 
Peak memory clocks achievable 
 

More L2 
Double bandwidth 

Double size 
 

More efficient DRAM ECC Implementation 
DRAM ECC lookup overhead reduced by 66% 
(average, from a set of application traces) 



Improving Programmability 

Dynamic 

Parallelism 
Occupancy 

Simplify CPU/GPU Divide 

Library Calls from Kernels 

Batching to Help Fill GPU 

Dynamic Load Balancing 

Data-Dependent Execution 

Recursive Parallel Algorithms 



What is Dynamic Parallelism? 

The ability to launch new grids from the GPU 
Dynamically 

Simultaneously 

Independently 

CPU GPU CPU GPU 

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself 



CPU GPU CPU GPU 

What Does It Mean? 

Autonomous, Dynamic Parallelism GPU as Co-Processor 



Data-Dependent Parallelism 

CUDA Today CUDA on Kepler 

Computational 

Power allocated to 

regions of interest 



Dynamic Work Generation 

Initial Grid 

Statically assign conservative 

worst-case grid 

Dynamically assign performance 

where accuracy is required 

Dynamic Grid 

Fixed Grid 



Batched & Nested Parallelism 

Algorithm flow simplified for illustrative purposes 

CPU-Controlled Work Batching 
CPU programs limited by single point of 
control 

 

Can run at most 10s of threads 

 

CPU is fully consumed with controlling 
launches 

CPU Control Thread 

dgetf2 dgetf2 dgetf2 

CPU Control Thread 

dswap dswap dswap 

dtrsm dtrsm dtrsm 

dgemm dgemm dgemm 

CPU Control Thread 

Multiple LU-Decomposition, Pre-Kepler 

CPU Control Thread 

CPU Control Thread 



Batched & Nested Parallelism 

Algorithm flow simplified for illustrative purposes 

Batching via Dynamic Parallelism 
Move top-level loops to GPU 

 

Run thousands of independent tasks 

 

Release CPU for other work 

CPU Control Thread 

CPU Control Thread 

GPU Control 

Thread 

dgetf2 

dswap 

dtrsm 

dgemm 

GPU Control 

Thread 

dgetf2 

dswap 

dtrsm 

dgemm 

GPU Control 

Thread 

dgetf2 

dswap 

dtrsm 

dgemm 

Batched LU-Decomposition, Kepler 



Grid Management Unit 

Work Distributor 

32 active grids 

Stream Queue Mgmt 
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Pending & Suspended Grids 

1000s of pending grids 
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Fermi Concurrency 

Fermi allows 16-way concurrency 

Up to 16 grids can run at once 

But CUDA streams multiplex into a single queue 

Overlap only at stream edges 

P -- Q -- R 

A -- B -- C 

X -- Y -- Z 

Stream 1 

Stream 2 

Stream 3 

Hardware Work Queue 

A--B--C     P--Q--R     X--Y--Z 



Kepler Improved Concurrency 

P -- Q -- R 

A -- B -- C 

X -- Y -- Z 

Stream 1 

Stream 2 

Stream 3 

Multiple Hardware Work Queues 

A--B--C 

P--Q--R 

X--Y--Z 

Kepler allows 32-way concurrency 
One work queue per stream 

Concurrency at full-stream level 

No inter-stream dependencies 



Fermi: Time-Division Multiprocess 

CPU Processes 

Shared GPU 

E F D C B A 
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Fermi: Time-Division Multiprocess 

CPU Processes 

Shared GPU 

E F D C B A 



Hyper-Q: Simultaneous Multiprocess 

E F D C B A 

CPU Processes 

Shared GPU 



Without Hyper-Q 
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Whitepaper: http://www.nvidia.com/object/nvidia-kepler.html 


