
Separate Compilation in 

CUDA 5.0 

by Mike Murphy 



No Separate Compilation in earlier releases 

Earlier CUDA required single source file for a single kernel 

No linking external device code 

a.cu b.cu c.cu main.cpp + program.exe 

Include files together to build 

all.cu 



CUDA 5: Separate Compilation & Linking 

CUDA 5 can link multiple object files into one program 

+ program.exe main.cpp 

a.cu b.cu 

a.o b.o 

c.cu 

c.o 

Separate compilation allows building independent object files 



Benefits of Separate Compilation 

Eases porting code 
no longer have to include files together 

“extern” attribute is respected 

 

Incremental compilation reduces build time 
e.g. 47000 line app used to take 50 seconds to build, now when split 

into multiple files takes 4 seconds to build if only one file changed 

 

Can create and use 3rd party libraries 



CUDA 5: Library Support 

Can combine object files into static libraries 
 

a.cu b.cu 

a.o b.o + 

ab.a 

+ 

main.cpp 

program.exe 

foo.cu 

+ 

Link and externally call device code 



CUDA 5: Library Support 

Can combine object files into static libraries 
 

a.cu b.cu 

a.o b.o + 

ab.a 
 

ab.a 

program2.exe 

+ 

main2.cpp 

bar.cu 

+ 

Facilitates code reuse, reduces compile time 
 

+ 

main.cpp 

program.exe 

foo.cu 

+ 

Link and externally call device code 



CUDA 5: Callbacks 

Enables closed-source device 

libraries to call user-defined 

device callback functions 
vendor.a 

+ 

main.cpp 

program.exe 

foo.cu 

+ 

callback.cu + 



Separate Compilation Features 

SM_2x and above (Fermi & Kepler, no support for sm_1x) 

All platforms (Linux, Windows, and MacOS) 

All CUDA features 

Optimized and Debug (-G) compilations 

Support both previous whole-program compilation and new 

separate compilation. 

Default is whole-program compilation, have to opt in to separate 

compilation. 



Libraries 

Can link static host libraries (.a,.lib) that contain 

device code 

Shared libraries (.dylib,.so,.dll) are ignored by device 

linker 

libcublas_device.a is linkable device library that we 

ship and is used for dynamic parallelism 



Example usage 

nvcc –arch=sm_20 –dc *.cu 

-c is used for host compile to object, so invented -dc 

-dc == --device-c == --relocatable-device-code -c 

Without –dc we default to old whole program compilation 

nvcc –arch=sm_20 *.o 

Device linker is implicitly run for sm_20 and above, but does nothing if 

does not find relocatable device code. 

 

If want to use host linker: 

nvcc –arch=sm_20 *.o –dlink –o link.o  

create new object; -dlink == --device-link 

g++ *.o –lcudart 

link all objects, including new link.o 

CUDA host objects must be passed to both device and host linkers 

 



Demo 

 



Multiple Device Links 

Can do multiple device links within a single host executable 

nvcc a.o b.o –dlink –o link1.o 

nvcc c.o d.o –dlink –o link2.o 

g++ a.o b.o c.o d.o link1.o link2.o 

Useful when separate code sections 

Similar to how we previously allowed multiple device modules in 

a single host executable (x.cu and y.cu) 

If library writer wants to device-link some code together, then user 

can still invoke device linker on own code 

Can reduce resource requirements, e.g. if function pointers then 

may assume that code from another section is reached, and thus 

require more registers than really needed 

 

 

 



Compatibility warning 

Current 5.0 linker will not JIT to future architectures 

SASS is linked, not PTX 

PTX can be input to linker, but is first compiled to SASS then linked 

Must relink objects for each architecture 

nvcc –arch=compute_20 –code=sm_20,sm_30 

Will support JIT linking in future release 

 

 

 



Summary 

Separate Compilation of device code is supported in 

CUDA 5.0 

Eases porting 

Incremental Recompilation 

Library Support 

For more info, see “Using Separate Compilation in 

CUDA” section at end of NVCC document. 

 

 



a.cu 

Frontend 

Device  

Compiler 

Fatbinary 
Host  

Compiler 

Device code Host code 

a.o 

nvcc compile 



a.cu 

Frontend 

Device Compiler 

Fatbinary Host Compiler 

Device code Host code 

a.o b.o Device Linker 

dlink.o 

Executable 

c.cpp 

c.o 

Frontend 

Device Compiler 

Fatbinary Host Compiler 

Device code Host code 

Host Compiler 

Host Linker 

b.cu 

nvcc separate compilation and link 


