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Overview
• Approaches to realtime water simulation

• Hybrid shallow water solver + particles

• Hybrid 3D tall cell water solver + particles

• Future
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Realtime Water Simulation

4

“2D” “3D”
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“2D” Simulations

• Water represented by height above an 
underlying terrain
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• Grid 

• Particle

“2D” Simulations
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Wave sim
Pipe sim

FFT Shallow water sim

Wave Particle Shallow water SPH

NVIDIA DirectX 11, Island Demo

Solenthaler et al. 11Yuksel et. al. 07

Brodtkorb A. R. et al. 11, Hilko et al. 09
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“2D” grid

• Water depth (and terrain 
height) stored in 2D array

• Water depth is updated in 
each time step 
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X

Z
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FFT

• Fast Fourier Transform (FFT)
• Represent waves as sum of sinusoids
• Wave length, speed, amplitude from 

statistical models
• Update height and derivatives in 

frequency domain
• Use iFFT to transform back to spatial 

domain for rendering
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FFT
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NVIDIA DirectX 11, Island Demo
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FFT

• Pros
• Fast
• Great results for ocean wave, open water

• Cons
• No interaction with objects
• No boundary
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Wave equation / Pipe model

• Wave equation
• Assumptions: Water surface is a height field, 

velocity constant vertically, water is shallow, 
pressure gradient is vertical, ignore non-linear 
terms
• Discretize temporally and spatially 
• Result in water height stored in 2D array + 

update rules
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Wave equation / Pipe model

12

Hilko et al. 09, “Real-Time Open Water Scenes with Interacting Objects”
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Wave equation / Pipe model

• Pipe model
• Water heights stored in 2D array
• Neighbors are connected by pipe
• Flow rate in pipes updated by heights
• Heights changed by flow rate
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Wave equation / Pipe model

14

Stava et al. 08, “Interactive Terrain Modeling Using Hydraulic Erosion”
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Wave equation / Pipe model

• Pros
• Still fast
• Interaction with objects
• Boundary

• Cons
• No vortices
• No large flow
• Not unconditionally stable
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Shallow water equation
• Assumptions: Water surface is a height field, 

velocity is constant vertically, water is shallow, 
pressure gradient is vertical, with non-linear term

• Discretize temporally and spatially 
• Result in water height + velocity stored in 2D 

array + update rules
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Shallow water equation
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Brodtkorb A. R. et al. 11, “Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation”
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Shallow water equation

• Pros
• Still fast
• Interaction with objects
• Boundary
• Vortices

• Cons
• Not unconditionally stable
• No splash, foam, spray
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Wave Particles
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Yuksel et. al. 07, “Wave Particles”

• Particle based wave simulation
• Each particle stores a waveform 
• Particles form wave front

• Either bounce off or leave domain boundary
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Wave Particles
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Yuksel et. al. 07, “Wave Particles”
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Wave Particles

• Pros
• Interaction with objects
• Open boundary is easy
• Unconditionally stable

• Cons
• Still require grid for rendering
• No vortices
• No large flow
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SPH Shallow Water Simulation

22

• Use Smoothed Particles Hydrodynamics (SPH) to solve 
shallow water equation

• Particles store mass and velocity
• Kernels are centered around particles

• Volume computed by summing kernel values
• Density = Mass / Volume interpreted as height

SPHERIC - SPH European Research Interest Community
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SPH Shallow Water Simulation
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Solenthaler et al. 11, “SPH Based  Shallow Water Simulation”
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SPH Shallow Water Simulation

• Pros
• Interaction with objects
• Open boundary is easy
• Vortices and Flow 

• Cons
• Still require grid for rendering
• Not unconditionally stable
• Still no 3D effect!
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“2D” Simulations

Wave sim
Pipe sim

FFT Shallow water sim

Wave Particle Shallow water SPH

NVIDIA DirectX 11, Island Demo

Solenthaler et al. 11Yuksel et. al. 

Brodtkorb A. R. et al. 11, Hilko et al. 

• Generally fast
• Interaction with solids
• Used in many games

• But no 3D effects
• Can get away with 

good procedural 
approaches!
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• Grid 

• Particles

“3D” Simulations
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Regular GridDiscrete Sine/Cosine 
Transform

SPH

Long B. and Reinhard E. Keenan C. et al. 2007

NVIDIA PhysX Fluid DemoNVIDIA GF100 Fluid Demo
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3D grid

• Water states stored in 3D array
• Velocity
• Distance to surface
• Density
• etc.

• States are updated in each time step
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Discrete Sine/Cosine Transform
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• Use cosine and sine transform
• Instead of FFT
• To be able to enforce boundary condition

• Do physics in frequency domain

• Transform back to spatial domain
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Discrete Sine/Cosine Transform
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Long B. and Reinhard E. 09 ,”Real-Time Fluid Simulation Using Sine/Cosine Transforms”
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Discrete Sine/Cosine Transform

• Pros
• Relatively fast
• Unconditionally stable

• Cons
• No interaction with object
• Box shape domain
• No small scale details for coarse grid
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Regular grid
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• Commonly used in offline production simulation
• Store water states in dense 3D grid
• Solve fluid dynamics PDE by discretizing spatially 

and temporally 
• States in the next time step determined by state 

in the current time step and external forces
• “Brute Force”
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Regular Grid
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Keenan C. et al. 2007, “Real Time Simulation and Rendering of 3D Fluids”

32



Regular Grid

• Pros
• Good result
• Unconditionally stable

• Cons
• Box shape domain
• Very computationally intensive
• Mass loss
• No small scale details for coarse grid
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• Use Smoothed Particles Hydrodynamics (SPH) to solve 
fluid dynamic PDE

• Particles store mass, velocity,
• Kernels are centered around particles

• Reconstruct surface from particle or                                              
render particles directly

SPH Simulation
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Mueller et al.  03, “Particle-Based Fluid Simulation for Interactive Applications”
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SPH Simulation
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NVIDIA PhysX Fluid Demo
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SPH Simulation
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NVIDIA GF100 Fluid Demo
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SPH Simulation

• Pros
• Arbitrary domain
• Interaction with object
• No mass loss

• Cons
• Noisy surface
• Not unconditionally stable
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38

“3D” Simulations
• At high resolution, 

produce great results
• Widely used in 

movie industry

• Can’t afford to do 
large scene with small 
scale details

26

Regular GridDiscrete Sine/Cosine 
Transform

SPH

Long B. Keenan C. 

NVIDIA PhysX Fluid NVIDIA GF100 Fluid 
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Overview
• Approaches to realtime water simulation

• Hybrid shallow water solver + particles

• Hybrid 3D tall cell water solver + particles

• Future
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Shallow water equation

40

Brodtkorb A. R. et al. 11, “Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation”

• Missing
• Splashes
• Sprays
• Small Waves
• Foams

• Use particles!
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Shallow Water Solver + Particles

• Large bodies of water
• Pond, River, Beach, Open Ocean

• Small scale details
• Splashes, Sprays, Small Waves, Foams
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Shallow Water Solver + Particles

42

Chentanez N. and Mueller M. 2010, “Real-time Simulation of Large Bodies of Water with Small Scale Details”
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Shallow Water Equations
• Simplify from 3D Fluid Equation to 2D
• Water depth, h
• 2D velocity, v
• Terrain height, H

• Discretized with staggered grid
• Cell center    :
• Store h and H

• X-Face   and Z-Face     :
• x and z component of v
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X

Z
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Particles Simulation

• Particles sources
• Waterfalls
• Terrain height discontinuity, 

create spray and splash

• Breaking waves
• When wave about to overturn, 

create spray and splash
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Particles Simulation

• Particles sources
• Falling splash
• Create spray and foam

• Solid interaction
• Create spray and splash
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Waterfall
• We treat a face as a waterfall face if
• Terrain height change is greater than a 

threshold and
• Water height in the lower cell has not yet 

reached the terrain height in the higher cell
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Waterfall
• Particles generation

• Sample uniformly within red dotted box
• Total mass should be the same as mass flow 

across the face
• Velocity found by interpolation
• Jitter initial position and velocity
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Waterfall
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Adding small scale waves
• Simulation cannot resolve waves with wave length
• Decreasing        may not be an option
• Still want small waves with the following properties

• Advected with the velocity field
• Not distorted excessively over time
• Disappear if being stretched too much
• Cheap to compute

49

49



Adding small scale waves

• Algorithm 
• Generate texture using FFT simulation

• Advect 3 set of texture coordinates
• Fetch texture and blend to get displacement map
• Regenerate after some time
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Adding small scale waves
• So far, waves will never disappear
• Wave persist even when being stretched a lot
• Can have lava-like look
• Need to suppress in region with too much stretch
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Without suppressant With suppressant
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Adding small scale waves
• Measure of deformation

• Use maximum eigenvalue of the Green Strain of the texture 
coordinates

• Modulate the final displacement
• With an exponential decay
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Without suppressant With suppressant
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Adding small scale waves
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More results
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More results
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Overview
• Approaches to realtime water simulation

• Hybrid shallow water solver + particles

• Hybrid 3D tall cell water solver + particles

• Future
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Grid based 3D water simulation
• Small domain

• Computation increase 
with volume of water

• Also want small scale 
details
• Splash
• Foam
• Spray
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Keenan C. et al. 2007, “Real Time Simulation and Rendering of 3D Fluids”
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3D Tall Cell Water Solver + Particles
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Chentanez N. and Mueller M. 2011, “Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid”
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3D Tall Cell Water Solver + Particles
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3D Tall Cell Water Solver
• States of water 
• u - Velocity field

• ϕ - Level Set (Signed distance function)
• Positive inside water
• Negative outside water
• Zero on surface

• Store states on grid points
• Interpolate to get value everywhere

• Simulation == Rules to update these states

60

http://en.wikipedia.org/wiki/File:Signed_distance2.png
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http://en.wikipedia.org/wiki/File:Signed_distance2.png
http://en.wikipedia.org/wiki/File:Signed_distance2.png


Discretization

• Tall cell grid
• Each column consist of
• Constant number of regular cells
• One tall cell
• Terrain
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Discretization

• Tall cell grid
• Heights are multiple of
• Physical quantities u, ϕ
• At cell center for regular cells
• At top and bottom of tall cells
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∆x

4∆x

6∆x

∆x
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Discretization
• Tall cell grid
• Quantity   at world position                   

denoted by
• Hide tall cell structure of the grid
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Direct lookup

Linear interpolation

q (x∆x, y∆x, z∆x)

“Air value”

“Terrain value”

q(x, y, z)
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Time integration
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Extrapolate u to air
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Time integration
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Extrapolate u to air
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Time integration
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Extrapolate u to air
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Time integration
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Extrapolate u to air
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Time integration

68

Because ϕ will no longer be a signed 
distance function, as we update the states

Extrapolate u to air

Make ϕ a signed distance function
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Time integration
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Extrapolate u to air

Make ϕ a signed distance function

69



Time integration
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Extrapolate u to air

Make ϕ a signed distance function
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Time integration
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Extrapolate u to air

Make ϕ a signed distance function
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Time integration

72

Extrapolate u to air

Make ϕ a signed distance function

Move u and ϕ along velocity field u
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Time integration
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Extrapolate u to air

Make ϕ a signed distance function

Move u and ϕ along velocity field u
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Time integration
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Extrapolate u to air

Make ϕ a signed distance function

Move u and ϕ along velocity field u

Adjust tall cell heights
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Time integration
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Extrapolate u to air

Make ϕ a signed distance function

Move u and ϕ along velocity field u

Adjust tall cell heights
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Time integration
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Extrapolate u to air

Make ϕ a signed distance function

Move u and ϕ along velocity field u

Adjust tall cell heights

Make u divergence free
The most difficult and 
time consuming step
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Particles
• Spray

• Seed particles inside grid cells whose ϕ  are positive but small 
(near water surface)

• Move them along velocity field u
• After we update ϕ, for each particle

• Check if ϕ at the current location is negative (outside water)
• If so, generate spray particles
• otherwise, ignore

• Move ballistically

• Foam
• Generate when spray particle falls into water
• Move with u, projected to water surface
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More result
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Chentanez N. and Mueller M. 2011, “Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid”
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Future

• Hybrid 3D + 2D + Particles + Procedural?
• 3D + Particles near camera
• 2D + Particles further away
• 2D even further
• Procedural far from camera
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Future
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Thuerey N. et, al, 2006 “Animation of Open water Phenomena with coupled Shallow Water and Free Surface Simulation”
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Future
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Thuerey N. et, al, 2006 “Animation of Open water Phenomena with coupled Shallow Water and Free Surface Simulation”
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Future

• Hybrid 3D + 2D + Particles + Procedural?
• 3D + Particles near camera
• 2D + Particles further away
• 2D even further
• Procedural far from camera

• Dynamic LOD 
• Best quality within budget
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Q&A
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Thank you very much!
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∇ · u = 0

Math
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∂u

∂t
= −u ·∇u−∇p+ µ∇2u+ f
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
Velocity moves itself
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
Velocity moves itself External force such as gravity
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
Velocity moves itself External force such as gravity

Pressure gradient
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
Velocity moves itself External force such as gravity

Pressure gradient

Incompressibility
- What come in must go out
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
Velocity moves itself External force such as gravity

Pressure gradient

Incompressibility
- What come in must go out

Implicit function that represent water body
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3D Tall Cell Water Solver

• Solve Inviscid Euler Equations

• Subject to

• Inside region
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∂u

∂t
= −(u ·∇)u+

f

ρ
− ∇p

ρ

∇ · u = 0

φ < 0

∂φ

∂t
= −u ·∇φ

Change in velocity
Velocity moves itself External force such as gravity

Pressure gradient

Incompressibility
- What come in must go out

Implicit function that represent water body

Implicit function moved
by water velocity
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