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Programmable Shaders: GeForceFX (2002)

= Vertex and fragment operations specified in small (macro) assembly
language (separate processors)

= User-specified mapping of input data to operations

= Limited ability to use intermediate computed values to index input
data (textures and vertex uniforms)

ADDR RO.xyz, eyePosition.xyzx, —-f[TEX0].xyzx;
DP3R RO.w, RO.xyzx, RO.xyzx;

RSQOR RO.w, RO.w;

MULR RO.xyz, RO.w, RO.xyzx;

‘Zi) ADDR Rl.xyz, lightPosition.xyzx, -f[TEX0].xyzx;
- *‘T\ ) DP3R RO.w, Rl.xyzx, Rl.xyzx;
C Temp o J I RSQOR RO.w, RO.w;
7/
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MADR RO.xyz, RO.w, Rl.xyzx, RO.xyzx;
MULR Rl.xyz, RO.w, Rl.xyzx;

DP3R RO.w, Rl.xyzx, f[TEX1].xyzx;
MAXR RO.w, RO.w, {0}.x;




The Pioneers: Early GPGPU (2002) @]G PU

www.gpgpu.org

= Ray Tracing on Programmable Graphics Hardware,
Purcell et al.

= PDEs in Graphics Hardware, Strzodka, Rumpf

= Fast Matrix Multiplies using Graphics Hardware,
Larsen, McAllister
= Using Modern Graphics Architectures for General-

Purpose Computing: A Frameworks and Analysis,
Thompson et al.

Early Raytracing



Challenges with Early GPGPU Programming

= HW challenges

* Limited addressing modes Input Registers
 Limited communication: inter-pixel, y
scatter aEm Texture
* Lack of integer & bit ops Fragment et constants
» No branching Program _
> Temp Registers
= SW challenges -
 Graphics API (DirectX, OpenGL) y
Output Registers

* Very limited GPU computing ecosystem
» Distinct vertex and fragment procs

Software (DirectX, Open GL) and hardware slowly became more general purpose...



GeForce 8800 (G80)

Unified Compute Architecture Unified processor types

« Unified access to mem structures
e DirectX 10 & SM 4.0
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CUDA C Programming

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

. v = ey Serial C Code

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (G < n) y[i] = a*x[i] + y[i]l;
} Parallel C Code

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, Y);



GPU Computing Comes of Age
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KEPLER

SMX (3x power efficiency)

Hyper-Q

(programmability and

. . application coverage
Dynamic Parallelism A 8€)




Hyper-Q
Easier Speedup of Legacy MPI Apps

FERMI

1 Work Queue CP2K- Quantum Chemistry

Strong Scaling: 864 water molecules
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Dynamic Parallelism
Simpler Code, More General, Higher Performance
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Quicksort Performance
Dynamic Parallel vs. Host-Contirolled

e CPTJ Launch

Increasing Problem Size

Code Size Cut by 2x
2x Performance

GPU Launch




Titan: World’s #1 Supercomputer

18,688 Tesla K20X GPUs
World leading efficiency
27 Petaflops




Kepler GPU Performance Results

Dual-socket comparison: CPU/GPU node vs. Dual-CPU node
CPU = 8 core SandyBridge E5-2687w 3.10 GHz
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The Future




The Future of HPC Programming

Computers are not getting faster... just wider

= Need to structure all HPC apps as throughput problems

Locality within nodes much more important
= Need to expose locality (programming model)

& explicitly manage memory hierarchy
(compiler, runtime, autotuner)




OpenACC Directives

Portable Parallelism

OpenMP OpenACC Directives
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How Are GPUs Likely to Evolve Over This Decade?

= Integration
= Further concentration on locality (both HW and SW)
= Reducing overheads

= Continued convergence with consumer technology




Echelon

NVIDIA’s Extreme-Scale Computing Project
DARPA UHPC Program
Targeting 2018
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2018 Vision: Echelon Compute Node & System

System Interconnect

“DRAM

Stacks ' !

L2, [ L2, [N
256KB

256KB

NoC

Node 0: 16 TF, 2 TB/s, 512+ GB

Cabinet 0: 4 PF, 128 TB

| Echelon System (up to 1 EF)

\

Cabinet N-1
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Key architectural features:

Malleable memory hierarchy
Hierarchical register files
Hierarchical thread scheduling
Place coherency/consistency
Temporal SIMT & scalarization

PGAS memory

HW accelerated queues
Active messages
AMOs everywhere
Collective engines

Streamlined LOC/TOC
interaction



Summary

= GPU accelerated computing has come a long way in a very short time
= Has become much easier to program and more general purpose
= Aligned with technology trends, supported by consumer markets

= Future evolution is about:
* Integration
* Increased generality - efficient on any code with high parallelism
» Reducing energy, reducing overheads

= This is simply how computers will be built
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