<A NVIDIA.

The Evolution of
GPU Computing

Steve Scott
CTO Tesla, NVIDIA
SC12, Salt Lake City

Early 3D Graphics Pipeline

Application

: Host
Scene Management

s —— *__J

Geometry
v

Rasterization

GPU v Frame

Pixel Processing Buffer

L2 Memory
ROP/FBI/Display [

Y

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

|-

.....

DirectX 5
Riva 128

!

DirectX 7
T&L TextureStageStage
GeForce 256

Moving Toward Programmability

DirectX 9.0c
SM 3.0
GeForce 6

!

A

Half-Life

[[[[
1998 T 1999 2001 T 2002

DirectX 6
Multitexturing
Riva TNT

DirectX 8 DirectX 9

GeForce 3 GeForceFX

A 4

[
2004

A TR
48 > - B 4056
Far Cry UE3

All images © their respective owners

No Lighting Per-Vertex Lighting Per-Pixel Lighting

= 2 - . 3

Copyright © NVIDIA CoJoration 2006

Programmable Shaders: GeForceFX (2002)

= Vertex and fragment operations specified in small (macro) assembly
language (separate processors)

= User-specified mapping of input data to operations

= Limited ability to use intermediate computed values to index input
data (textures and vertex uniforms)

ADDR RO.xyz, eyePosition.xyzx, —-f[TEX0].xyzx;
DP3R RO.w, RO.xyzx, RO.xyzx;

RSQOR RO.w, RO.w;

MULR RO.xyz, RO.w, RO.xyzx;

‘Zi) ADDR Rl.xyz, lightPosition.xyzx, -f[TEX0].xyzx;
- *‘T\) DP3R RO.w, Rl.xyzx, Rl.xyzx;
C Temp o J I RSQOR RO.w, RO.w;
7/
ZJ

MADR RO.xyz, RO.w, Rl.xyzx, RO.xyzx;
MULR Rl.xyz, RO.w, Rl.xyzx;

DP3R RO.w, Rl.xyzx, f[TEX1].xyzx;
MAXR RO.w, RO.w, {0}.x;

The Pioneers: Early GPGPU (2002) @]G PU

www.gpgpu.org

= Ray Tracing on Programmable Graphics Hardware,
Purcell et al.

= PDEs in Graphics Hardware, Strzodka, Rumpf

= Fast Matrix Multiplies using Graphics Hardware,
Larsen, McAllister
= Using Modern Graphics Architectures for General-

Purpose Computing: A Frameworks and Analysis,
Thompson et al.

Early Raytracing

Challenges with Early GPGPU Programming

= HW challenges

* Limited addressing modes Input Registers
 Limited communication: inter-pixel, y
scatter aEm Texture
* Lack of integer & bit ops Fragment et constants
» No branching Program _
> Temp Registers
= SW challenges -
 Graphics API (DirectX, OpenGL) y
Output Registers

* Very limited GPU computing ecosystem
» Distinct vertex and fragment procs

Software (DirectX, Open GL) and hardware slowly became more general purpose...

GeForce 8800 (G80)

Unified Compute Architecture Unified processor types

« Unified access to mem structures
e DirectX 10 & SM 4.0

: w
.
v

Vix Thread Issue Geom Thread Issue Pixel Thread Issue
12

Thread Processor

CUDA C Programming

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

. v = ey Serial C Code

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (G < n) y[i] = a*x[i] + y[i]l;
} Parallel C Code

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, Y);

GPU Computing Comes of Age

60 -
50 ~
40 A
30 -
20 -

10 A

Kepler
« Large perf/lw T
Programmability

GPU-Accelerated Systems in Top500 enhancements

2006 — G80

* Unified Graphics/Compute
Architecture

 |EEE math

« CUDA introduced at SC’06

Fermi
« ECC
* High DP FP perf
Tesla e C++ support
« Double PP
precision FP l
= . = . aem—.S— =

June 2007 Nov 2007 June 2008 Nov 2008 June 2009 Nov 2009 June 2010 Nov 2010 June 2011 Nov 2011 June 2012

KEPLER

SMX (3x power efficiency)

Hyper-Q

(programmability and

. . application coverage
Dynamic Parallelism A 8€)

Hyper-Q
Easier Speedup of Legacy MPI Apps

FERMI

1 Work Queue CP2K- Quantum Chemistry

Strong Scaling: 864 water molecules

I EEEEL
I EEEEEL

qﬁ..ﬂ
L |
[]
j-...!r
.l
W[=]

5] |
"‘E-Ill

KEPLER

32 Concurrent Work Queues

)
o
@)
[
]
[a)
%
>
o
>
S
0
0
o
w

O Hm ||
HEE EN |3
E CommmmEs 10 15

Number of GPUs
K20 with Hyper-Q e===K20 without Hyper-Q

16 MPI ranks 1 MPI rank
per node per node

JOEEEEE NN
JDII.II. !
OJO0oNEREE N
TDDDDDI
DO000OEN

Fermi GPU
(i

fim mn mm o
fim mm

fim

m

Dynamic Parallelism
Simpler Code, More General, Higher Performance

Kepler GPU
—
fim
TR
A o

o
]
£
=
g
B
- -
=
<
-9
&0
=
=
=
S
w
w
=
=
=
i
=

Quicksort Performance
Dynamic Parallel vs. Host-Contirolled

e CPTJ Launch

Increasing Problem Size

Code Size Cut by 2x
2x Performance

GPU Launch

Titan: World’s #1 Supercomputer

18,688 Tesla K20X GPUs
World leading efficiency
27 Petaflops

Kepler GPU Performance Results

Dual-socket comparison: CPU/GPU node vs. Dual-CPU node
CPU = 8 core SandyBridge E5-2687w 3.10 GHz

WS-LSMS
CPU+K20X

CPU+M2090
Dual-CPU

16.70
7.00

Chroma
CPU+K20X

CPU+M2090
Dual-CPU

SPECFEM3D
CPU+K20X
CPU+M2090
Dual-CPU

10.20
8.00

8.85
5.41

AMBER
CPU+K20X

CPU+M2090
Dual-CPU

7.17

NAMD
CPU+K20X

CPU+M2090
Dual-CPU

6 7 8 9 1

0O 11 12 13 14 15 16 17 18

The Future

The Future of HPC Programming

Computers are not getting faster... just wider

= Need to structure all HPC apps as throughput problems

Locality within nodes much more important
= Need to expose locality (programming model)

& explicitly manage memory hierarchy
(compiler, runtime, autotuner)

OpenACC Directives

Portable Parallelism

OpenMP OpenACC Directives

/o N)

How Are GPUs Likely to Evolve Over This Decade?

= Integration
= Further concentration on locality (both HW and SW)
= Reducing overheads

= Continued convergence with consumer technology

Echelon

NVIDIA’s Extreme-Scale Computing Project
DARPA UHPC Program
Targeting 2018

e NIVERSITY of
W I ENNESSEE

U

I'HE '
UNIVERSITY
OF UTAH

2018 Vision: Echelon Compute Node & System

System Interconnect

“DRAM

Stacks ' !

L2, [L2, [N
256KB

256KB

NoC

Node 0: 16 TF, 2 TB/s, 512+ GB

Cabinet 0: 4 PF, 128 TB

| Echelon System (up to 1 EF)

\

Cabinet N-1

4

Key architectural features:

Malleable memory hierarchy
Hierarchical register files
Hierarchical thread scheduling
Place coherency/consistency
Temporal SIMT & scalarization

PGAS memory

HW accelerated queues
Active messages
AMOs everywhere
Collective engines

Streamlined LOC/TOC
interaction

Summary

= GPU accelerated computing has come a long way in a very short time
= Has become much easier to program and more general purpose
= Aligned with technology trends, supported by consumer markets

= Future evolution is about:
* Integration
* Increased generality - efficient on any code with high parallelism
» Reducing energy, reducing overheads

= This is simply how computers will be built

<A NVIDIA.

