NVIDIA

Advanced Rendering
and GPU Ray Tracing

SIGGRAPH 2012

A
Agenda s

Progress in Advanced Rendering (iray)
GPU Ray Tracing Basics
Introduction to OptiX

What’s coming next in OptiX

NVIDIA Ray Tracing Options &

nvibiA

= CUDA - language and computing platform

— The basic choice for building entirely custom solutions from scratch

= OptiX - middleware for ray tracing developers

— Good choice for developers with domain expertise building
custom solutions which prefer leaving GPU issues to NVIDIA

= iray & mental ray - licensed rendering products

— Good choice for companies wanting a ready-to-integrate solution
which is maintained and advanced for them

NVIDIA Advanced Rendering <3

nvibiA

= Graphics is Core to NVIDIA’s Foundation;
Advanced Rendering is Core to Graphics’ Future

— Inspire with rapid advancements of what GPUs enable
— Commercial Products complete a vital Feedback Loop:

Result: best of class solutions exploiting & influencing full ecosystem

NVIDIA Rendering Options

=mental ray
focusing on the needs of Film Production
available StandAlone and licensed for integration

=iray
focusing on the needs of Design
licensed for integration

= OptiX ray tracing framework
focusing on general GPU ray tracing development
free to acquire and deploy

nvibiA

)IA Iray - in use <

nvibia

images courtesy of Delta Tracing

full image gallery removed to spare download times

nvibiA

NVIDIA Iray Integration Framework

= For Software Developers wanting to add physically based, easy to
use, iray rendering to their applications

= Procedure:

1. Register your interest at www.mentalimages.com

http: / /www.mentalimages.com/products/iray/iray-integration-framework/software-download. html
2. NVIDIA reviews application, and grants access to SDK

Integrate the SDK within your Application
4. Once satisfied, obtain a commercial license from NVIDIA

NVIDIA Iray for End Users <3

nvibiA

= [ray enabled products:
— Autodesk 3ds Max & 3ds Max Design
— Dassault Systemes Catia V6
— Bunkspeed SHOT, MOVE, PRO

= Recent features awaiting application integration:
— Multi-Layer BSDF Materials
— Matte Objects
— Motion Blur

.

NVIDIA Iray 3 - Released <3

nvibiA

= |ncludes:

— New lighting algorithms for greater accuracy and superior caustics in
more challenging lighting situations

— Render buffer support (diffuse, specular, UVYW’s, ID’s, etc.)
— Flexible cluster management

= |[nitial Light Path Expression support now, final later thlS year
— Extensive rendering pass control R

— Allows flexible post processing
of iray production renderings

nvibiA

Extending Iray’s Interactive Reach

= Currently In Development, and available later this year
= Multiple rendering modes, providing a quality/speed continuum

iray “photoreal”

120FPS¢+——P15FPS* 20FPS¢—»05FPS 10FPS¢——— Minutes
Strength: Very High Resolutions No / Minimal Noise while Interacting Physically Based / Easy to Use
Weakness: Very Approximate Not Physically Based Noisy while Resolving

= APIs for which mode to use, with what features, what to do on mouse-up, etc.
enable custom personalities for behavior and look

10

NVIDIA Iray - Progress Demo

= Showing IView - a test harness application from the SDK
= Today showing:

— lray Photoreal & Interactive

— Sharing of materials

= Common description
= Physically based

= Provides a stable target for
matching without any
algorithm knowledge

= Easy for end users to
manipulate

nvibiA

11

NVIDIA IndeX™ - for Geospatial Visualization

= Being produced in combination with partners
in the Oil and Gas Exploration industry

= GPU-based high-quality visualization
— Seismic volume ray-casting
— Horizon ray-tracing
— Primitive ray-tracing/rasterization
— Depth-correct transparency rendering

= CPU-based image compositing

— Cluster-wide parallel image compositing

<
nvibia

12

NVIDIA IndeX™ - for Geospatial Visualization

= GPU-cluster aware scalable solution
— Highly parallel across the&Pt-using CUDA and the

cluster -

-

= Performance Example:
— 80 GB Semi-transparent volume
— GPU Cluster
— 26 Tesla 2090M GPUs
— 1 Gigabit Ethernet
— 22.4 frames per second

<
nvibia

13

General GPU Ray Tracing

= Topics relating to most GPU ray tracing applications

nvibiA

14

GPU Ray Tracing Myths <

nvibiA

The only technique possible on the GPU is “path tracing”
FALSE: Many techniques have been implemented

Only Professional GPUs can do ray tracing
FALSE: GPU computing languages run on all NV GPUs

A GPU farm is more expensive than a CPU farm
FALSE: Much better Perf/S; with better Perf/Watt on Kepler

A GPU isn’t that much faster than a good CPU
FALSE: A single GPU is typically 4-12X a quad-core CPU

GPU Ray Tracing is very difficult
Very Possibly: OptiX speeds both ray tracing and GPU development

Scenes must fit into GPU memory - and that’s finite
Not Always: Panta Ray, CentiLeo, OptiX 2.5 paging, NVIDIA IndeX

15

GPU Ray Tracing Facts

1.

nvibiA

GPUs can accommodate most any ray tracing technique

Compute, and thus ray tracing, works on all NVIDIA GPUs

GPUs have superior performance (and maintenance) costs vs. CPUs
A single GPUs is considerably faster than multiple CPUs

OptiX makes both Ray Tracing and GPU development easier

Scenes can exceed GPU memory with OptiX 2.5 (up to system RAM)
and with custom approaches

16

nvibiA

Demo - State of the Art Interaction

= GPU Ray Tracing and Physics using OptiX and PhysX

= Custom Intersection
Object for water

= CUDA “Interop”
exchanges data
without extra copies

17

Commercial GPU Ray Tracing

iray

V-Ray RT

Arion

Octane

finalRender

LuxRender (open source)
CentiLeo

Panta Ray (Weta)

OptiX (2.5)

Adobe After Effects CS6

Custom OptiX, Works Zebra, etc.

mental ray 3.11 (nearing Beta)

CUDAC, C Runtime

CUDA C, Driver APl and OpenCL
CUDA C, Driver API

CUDA C, Driver API

CUDA C, C Runtime
OpenCL

CUDAC, driver API
CUDAC, driver API
CUDAC, driver API & PTX
OptiX API

OptiX API

OptiX API

nvibiA

Out of Core

Massive Out of Core

(Out of Core)

{3

({3

[1{4

{3

[{3

{1

18

GPU Ray Tracing Similarities - Performance

= Single GPU Ray Tracing Speed
— Usually linear to GPU cores and Core Clock - for a given GPU generation

— Gains between GPU generations often vary per application / technique

= Multi-GPU Ray Tracing Speed
— Solution dependent, Common in Renderers, OptiX supports by default

— Scaling efficiency varies by solution;
slow techniques usually scale better than fast ones (e.g., AO vs. Whitted)

= Cluster Speed (multi-machine rendering)

— Solution dependent, capabilities vary. OptiX doesn’t, iray does

nvibiA

19

GPU Ray Tracing Similarities - Hardware =

= “SLI” configuration is not needed for multi-GPU usage
= Nearly all renderers are Single Precision

= ECC driver choice (error correction) - NOT Recommended

— No Accuracy Benefit; Slows Performance, Reserves 2 GB on a 3 GB board
= Windows 7 is a bit slower than Windows XP or Linux

= GPU memory size is often key
— Entire scene must usually fit within GPU memory - to work AT ALL
— Multiple GPUs can NOT “pool” memory; entire scene must fit onto each

— If Out-of-Core is supported, it’s much slower than fitting in memory

= Consumer GPUs aren’t designed for constant “data center” usage

20

nvibiA

GPU Ray Tracing Similarities - Interaction

» GPU Computing (Ray Tracing) competes with system graphics
— GPUs are still singularly focused: Compute or Graphics - not simultaneous

— Often the single biggest design challenge for interactive app’s

= Careful Application Design is needed to achieve balanced interaction
— Gracefully stopping for user interaction and when app doesn’t have focus

— Controlling mouse pointers in the ray tracing app

= Or use Multi-GPU
— One GPU for graphics, additional GPU(s) for compute (Ray Tracing)

— Becoming mainstream with NVIDIA Maximus = Quadro + Tesla(s)

21

nvibiA

Solutions Vary in their GPU Exploitation

= A top end Fermi GPU will typically ray trace 4 to 12 times faster than
dedicated x86 code running on a good quad-core CPU

= Constant CPU Compute challenge is to keep the GPU “busy”

— Gains on complex tasks often greater than for simple ones

— Particularly evident with multiple GPUs,
where data transfers impact simple tasks more

— Can mean the technique needs to be rethought
in how it’s scheduling work for the GPU

— Example OptiX 2.1: previous versions tuned for simple data loads,
now tuned for complex loads, with a 30-80% speed increase

22

nvibiA

Multi-GPU Considerations for Development

Differing GPUs can mean different Compute capabilities

— Not just between architectures (e.g., Fermi vs. Kepler) but sometimes
within an architecture (e.g., GF100 vs. GF104)

— Either insist on HW consistency from users, program to lowest
denominator, or have multiple code paths

= TCC (Tesla Compute Cluster) mode for Windows
— Default driver mode for new C-Class Tesla’s (C2075 and newer)
— Compute-only mode; GPU no longer a Windows graphics device
— Should have parity with WDM driver with CUDA 5.0 (soon)

23

NVIDIA® OptiX" ray tracing engine

A programmable ray tracing framework enabling the rapid
development of high performance ray tracing applications —

from complete renderers to discrete functions
(collision, acoustics, ballistics, radiation reflectance, signals, etc.)

Use your techniques, methods, and data
for your application with simple programs —

OptiX makes it fast on the GPU;

abstracting both GPU interaction and the “heavy lifting”
of ray tracing into easy-to-use APIs, and (optionally) of
shading by exploiting GPU functions

The OptiX engine works purely in compute.

OptiX is not a renderer, or even tied to rendering - it’s a programmable ray tracing
pipeline - much like OpenGL is for raster graphics.

It’s currently being used in offline rendering, interactive rendering, and tasks that never
produce an image - like collision detection, way-finding, acoustics, ballistics, sonar,
where to place cell towers - when ever you’re tracing rays.

OptiX is easy to develop with, and extremely flexible

It combines easily with OpenGL or Direct3D for hybrid possibilities that can enhance any
viewport

It’s highly programmable, allowing you to process custom surfaces (algorithms,
primitives, patches, NURBS) and have custom ray data - the “ray payload” - which is
what allows any application type.

In taking care of making ray tracing fast, OptiX allows developers to concentrate on
technique.

OptiX is good example of engines delivering the latest NVIDIA capabilities - giving a near
4X speed-up to applications as they run on GF100 (Fermi) GPUs.

24

OptiX - similar to OGL in “Approach” P e
»

Application * C-based Shaders/Functions

Application Code & Data Structures (mlnlmal CUDA exp. reqd.)

= Small, Custom Programs

Acceleration Structures
Build & Traversal

Optimal GPU parallelism
and Performance

Memory Management

Paging

25

NVIDIA® OptiX" ray tracing engine

Optimal performance, from unique insights and methods
for the latest GPU capabilities

Easy to use, single ray programming model

Supports custom ray generation, material shading, object
intersection, scene traversal, ray payloads

Programmable intersection for custom surface types
(procedurals, patches, NURBS, displacement, hair, fur, etc.)

No assumptions on technique, shading language, geometry
type, or data structure

26

OptiX - in Use

+3k downloads per version

' ‘® ¥ LIGHTWORKS
‘ Rendering Realism

Adobe WORKYS ZEBRA

&~
- PO TEED FOR SPEED /7

Privately being used at companies doing:

* Content creation tools .
* Post production * Acoustics
* Next-Generation Gaming * Ballistics
« Massive On-Line Player Games and Services Multi-Spectral Simulation
* Radiation & Magnetic Reflection

Includes companies like: LEGO, Dolbe, CCP, Lockheed Martin, etc.

27

Adobe After Effects CS6 - using OptiX

New 3D compositing with ray traced production renderer
= Built from scratch, in 1 release cycle
= 100% OptiX - no x86 code

= |ncludes CPU Fallback
— Via LLVM in OptiX

— Currently unique to Adobe

28

OptiX - Rapid Evolution

= Version 1, November 2009
in use across many markets

= Version 2, August 2010
exploited Fermi architecture for 2-5X speed increase

= Version 2.1, January 2011
64-bit PTX, with +50% perf. on complex techniques, initial CPU fallback

= Version 2.5, April, 2012
memory paging, GPU accel. structure build

= Version 2.6, very soon
initial Kepler support & core improvements

= Version 3, Beta very soon - Dave to provide details

29

Ray Tracing on Kepler GPUs

= While OptiX 2.6 and iray 3 now support Kepler GPUs,
they are yet to be optimized for the Kepler architecture

= Optimization at NVIDIA will continue as the full-size Kepler GPU
(as in the K20) nears availability

= NVIDIA will be sharing all it learns with companies doing their own
GPU ray tracing approaches so they can also exploit Kepler

= Be careful in comparing ray tracing performance between recent
Kepler-based products and their Fermi predecessors, as this often
compares different “size” processors and CUDA core relationships

nvibiA

30

OptiX 2.5 Out of Core Performance

= Averaged results, as paging impact is view dependent

Texture Out of Core (Whitted) Geometry Out of Core (with AD)

i 2.5GB

Q6000 = Q5000 Q6000 Q5000

of 4k Images Millions of Textured & Smoothed Faces

Quadro 6000 = 6GB on board memory
Quadro 5000 = 2.5GB on board memory

31

mental ray Ambient Occlusion

= mental ray 3.11 pipeline accelerated (nearing Beta)

N

= 1.5sec HLBVH build + 15sec on Quadro 6000 vs. 20 minutes on CPU

32

OptiX - what’s next, and a bitter deeper

= David McAllister
OptiX Development Manager
NVIDIA

nvibiA

33

Introducing OptiX 2.6.
2.6 is about one feature: Kepler support

BTW, all these 3D logos were made with the new ray traced renderer in Adobe After
Effects CS6, which is based upon OptiX.

34

D + Kepler

2.6 is about providing one new feature: Kepler support.
It was made from the stable 2.5 code base.

If you are shipping to customers in the very near term, 2.6 is for you.

Not as much ray tracing perf comes for free

With OGL, D3D, and CUDA you see perf increases with each driver rev.

You will see speedups with each OptiX release as well. We have many more optimizations
to apply on Kepler and are actively working on that.

Perf per watt improvement

This is an initial implementation; we are hard at work optimizing.
The rest of the perf will come in the K20: more features, better perf

35

CUDA 1.0 — 4.0 used Opené4 compiler front end
CUDA 4.1+ uses LLVM
NVVM = LLVM for CUDA

Open source!

* NVVM code generation is very different.
® 2.6 is optimized for NVVM code.

LLVM stands for... It’s a ...

LLVM is a great leap forward for CUDA. It allows any language to work on the CUDA
platform and on OptiX.

36

Kepler Optimization
NVVM Optimization

It’s like having ten more people on your rendering team.

37

http://developer.nvidia.com

38

BVH refit on all builders

Up to 8X faster SBVH builds L .
Kepler opt!mrzatlon

CUDA Interoperablhty

GPU Direct for GL interop buffers
LRU page replacement policy optimized

CPU FallbaCk Multiple |IT’i§?OI'tEiITCE Sampling sample BVH Reﬁnemen t

etAttribute(USED.

VICE_ORDINAL)

- ean cuFFT sample
Large node graphs optimized

Isosurface water sample

f'lj \ ﬁ ‘ Maximﬁ gupport

CUDA 5.0 Support

getGPUPagingActive Better multi-GPU load balancing

Faster compiles in many cases
Callable Programs
TeXtu re IDS GPU Direct for RT_BUFFER_OUTPUT setUint(uint4)

Displacement mapping sample ChbAR Geersar Gonst GUID AL Moot it e
PTX 3 support p

Avoid recompiles in many cases

There are over thirty new features in OptiX 3.0 and I’d like to tell you about each one of
them. ... but | won’t.

40

BVH refit on all builders

Up to 8X faster SBVH builds L .
Kepler opt!mrzatlon

CUDA Interoperablhty

LRU page replacement policy optimized

CPU FallbaCk Multiple Importance Sampling sample BVH Reﬁnemen t

etAttribute(USED
VICE_ORDINAL)

GPU Direct for GL interop buffers

- ean cuFFT sample
Large node graphs optimized

Isosurface water sample

f'lj \ ﬁ ‘ Maximﬁ gupport

CUDA 5.0 Support

ge st GPUP; aging/

Better multi-GPU load balancing

Faster compiles in many cases
Callable Programs
TeXtu re IDS GPU Direct for RT_BUFFER_OUTPUT setUint(uint4)

Displacement mapping sample ChbAR Geersar Gonst GUID AL Moot it e
PTX 3 support p

Avoid recompiles in many cases

Interoperability (AKA “interop”) is the ability to share resources directly with other APIs
using the GPU.

OptiX has included Interop Support since day one for OpenGL and Direct3D, so you can
share textures and buffers without having to copy the data across the bus and through
your application. Many people have asked for OptiX interoperability with CUDA, and
we’re pleased to say that 3.0 includes this powerful capability.

41

OptiX 3.0 - CUDA Interoperability

* Sharing Contexts
* Sharing Pointers
* Multi-GPU

<3

nvibiA

42

OptiX 3.0 - Sharing CUDA Contexts >

nvibiA

* There is a CUcontext on each device.
* CUDA runtime silently manages these.
* OptiX used to create its own CUcontexts.

* Now we share with CUDA:

If CUDA runtime has already run we find its CUcontexts.
If OptiX runs before CUDA runtime we make new CUcontexts.

The CUDA runtime has a context per device that you use.

43

OptiX 3.0 - Sharing Pointers with CUDA &,

rtBufferSetDevicePointer() - CUDA owns the buffer

* d output probe buffer;

cudaSetDevice (0) ;
cudaMalloc (&d_output probe buffer, moving obj count *)):
rtBufferSetDevicePointer (buf, optixDevicel, d output probe buffer);

rtContextLaunchlD(..., moving obj count);

LOS reduction <<<moving obj count, 1>>> (d moving objs, d output probe buffer):;

44

OptiX 3.0 - Sharing Pointers with CUDA &,

rtBufferGetDevicePointer() - OptiX owns the buffer

rtContextLaunchlD(..., moving obj count);
* d output probe buffer;
rtBufferGetDevicePointer (buf, optixDevice0, &d output probe buffer);

cudaSetDevice (0) ;
LOS reduction <<<moving obj count, 1>>> (d moving objs, d output probe buffer):;

As with contexts, we can share buffer data owned by the application, or the application
can share buffer data owned by OptiX.

45

OptiX 3.0 - Collision Sample

* OptiX OUTPUT buffer used by CUDA
* OptiX, CUDA, and OpenGL

Uses OptiX, CUDA, and OpenGL

All pairs line of sight, plus 64 curb feeler rays

Red ones move away from nearest red or green

Greens move away from nearest green but chase nearest red

<3

nvibiA

46

OptiX 3.0 - Ocean cuFFT Sample

* Tessendorf FFT-based ocean surface algorithm
* Uses cuFFT
* 1024x512 simulation
* 1024x1024 height field primitive

* Water with Fresnel dielectric shading model
® 6 bounce reflection; 6 bounce refraction

* Preetham physically-based sky model miss program
* CUDA owns the buffer; OptiX uses it as RT_INPUT buffer
® Reinhard tone mapping on RT_OUTPUT buffer

Put Ocean talking points here.

<3

nvibiA

47

OptiX 3.0 - Water Sample rf,%

* PhysX CFD water simulation on one Fermi GPU
128x128x64 volume

* Water ray tracing on two Kepler GPUs
* Water with Fresnel dielectric shading model
12 bounce reflection; 12 bounce refraction

Put Ocean talking points here.

48

'
nvIDIA

Ways of handling multi-GPU buffers
INPUT: Buffer instance on each device
INPUT_OUTPUT: Buffer instance on each device; sync each frame
INPUT_OUTPUT | GPU_LOCAL: Buffer instance on each device
OUTPUT: One buffer instance on host (Zero Copy)

OUTPUT: Buffer instance on each device; sync part of buffer each
frame

OUTPUT: Buffer instance on GL device; sync part of buffer each frame

® QUTPUT: Buffer instance on each device; never sync; use CUDA
interop

INPUT: Buffer instance on each device ; sync each frame
INPUT: Buffer instance on each device ; never sync; use CUDA interop

SAY THIS WHILE OCEAN IS RUNNING

We wanted a way to allow apps to not worry about what devices they are running on.
7.4. Multi-GPU considerations

If the application provides or requests device pointers for all devices on which OptiX is running,
no additional data copies need to be made. However, whenever there is a mismatch between the
devices on which the application has provided or requested pointers and the devices on which
OptiX is running, OptiX will need to make sure that all of its devices have the necessary data.

Note that these issues can arise in some circumstances even when OptiX is only using one GPU. If
the application is running CUDA code on one GPU, but has instructed OptiX to only run on another
GPU, it is legal to use rtBufferSetDevicePointer to provide a device pointer on the non-OptiX GPU;
OptiX will handle any required data transfer internally.

7.4.1. When the application provides pointers to OptiX

If a device pointer is provided for one device but not for all OptiX devices, OptiX will allocate
memory on the missing devices and copy the buffer data from the provided pointer to the missing
devices during rtContextLaunch. It is a caught runtime error for the application to specify
pointers for more than one but less than all devices.

This implementation allows applications to be ignorant, if desired, of whether one or multiple
devices are being used for OptiX and whether CUDA is being run on the same or a different device
than OptiX. Conversely, the application may be fully in control of which devices run OptiX and
which devices run CUDA and fill each device’s copy of a buffer either by CUDA or by OptiX.

7.4.2. When the application receives pointers from OptiX

When the application requests a pointer from OptiX (to an RT_BUFFER_INPUT or
RT_BUFFER_INPUT_OUTPUT buffer), we assume that the application is modifying the data
contained in that buffer. Therefore we keep track of which OptiX devices the application has
requested pointers for, and if the application has requested only one pointer but there are
additional OptiX devices, we will copy the data from that device to all others on the next launch.
If the application requests pointers on all devices, we assume they have set up the data how they
want it, and no copying will happen. It is a caught runtime error to request pointers for more
than one but fewer than all devices.

49

" : ; A
Best Practices - Avoid unnecessary copies oa

* Taking a pointer — OptiX copies its contents to other devices.
RT_BUFFER_COPY_ON_DIRTY avoids this.

RTbuffer buf;
rtBufferCreateForCUDA(Ctx, RT_BUFFER_INPUT | RT_BUFFER_COPY_ON_DIRTY, &buf);

{

* d_input_buffer;
rtBufferGetDevicePointer(buf, optixDevice®, d_input_buffer);

cudaSetDevice(9);
CoolCUDAKernel<<<count, 1>>>(d_input_buffer);

rtBufferMarkDirty(buf);
rtContextLaunchlD(..., moving_obj_ count);

By default any buffer you have a pointer to requires OptiX to copy its contents to other
devices.

The exception is if you have pointers to the buffer on all devices then we assume you
update it yourself.

But let’s say you don’t update the data every frame. Maybe just on the first frame. Then
you don’t want OptiX copying it superfluously.

Marking the buffer as COPY_ON_DIRTY means that we won’t copy unless you call
rtBufferMarkDirty.

50

raight
Memery
& Compute
s
s+ Coumen
S Comet2i]
et 821
Nsignt
Memary
& Compute
Sreaer

& Coumers
& Comen3fo]

L Rowtooraion

s oge: [Felemame
P

con chimrs<deoce_sreRabts Aokt o
&

e, siihattrs Aabbiinicn

. ASBE Pl _INS o DA B

“.
KN

1| —

B &

The point: CUDA Interop avoids copies

o1

BVH refit on all builders

Up to 8X faster SBVH builds L .
Kepler opt!mrzatlon

CUDA Interoperablllty

GPU Direct for GL interop buffers

LRU page replacement policy optimized

CPU FallbaCk Multiple Importance Sampling sample BVH Reﬁnemen t

- ContextGetAttribute(USED ST_M
EVICE_ORDINAL)
o 1) ean cuFFT sample

Large node graphs optimized

getG ?agingForc

Maxrmus support
Isosurface water sample

CUDA 5.0 Support

getGPUPag Better multi-GPU load balancing

Faster compiles in many cases
Callable Programs
TeXtu re IDS GPU Direct for RT_BUFFER_OUTPUT setUint(uint4)

Displacement mapping sample ChbAR Geersar Gonst CUPDANA/Moptimization
PTX 3 support P

Avoid recompiles in many cases

BVH Refinement -

52

OptiX 3.0 - BVH Refinement >

» “Sbvh” is up to 8X faster
* “Lbvh” is extremely fast and works on very large datasets

* BVH Refinement optimizes the quality of a BVH
* Smoother scene editing

* Smoother animation

Slow Build Fast Build
Fast Render Slow Render

i .

MedianBvh

53

OptiX 3.0 - BVH Refinement >

SAH Cost of Fracturing Columns

—hlbvh only
—hlbvh+rotate .
Lower is
rotate only better.
—rotate + hlbvh every 3rd frame

N O M © OO0 N W
- - - - &N

54

OptiX 3.0 - Refit and Refine rf,%

rtAccelerationSetProperty(accel, “refit”, “1”)

O—rebuild whenever dirty

1—refit every frame if prim count constant; else rebuild

>1— refit every frame; refine every Nt frame if prim count constant; else rebuild
rtAccelerationSetProperty(accel, “refine”, “8”)

0O—rebuild or refit; never refine

1— refit and refine once per frame i prim count constant; else rebuild

>1 —refit and refine N times per frame if prim count constant; else rebuild

Both work on all BVH builders.

55

OptiX 3.0 - Fracture Demo

BVH Refinement: “refit”=1 “refine”=8
NVIDIA PhysX GPU Rigid Bodies
CUDA Interop for geometry
OpenGL Interop for TXAA
Glass shader with Fresnel reflection
* About 350,000 triangles
* Max ray depth of 12

BVH Refinement with One refine per frame; One rebuild per eight frames
NVIDIA PhysX GPU Rigid Bodies

CUDA - OptiX Interop for geometry

OpenGL - OptiX Interop for TXAA

Glass shader with Fresnel reflection

About 350,000 triangles

Max ray depth of 12

<3

nvibiA

56

BVH refit on all builders

Up to 8X faster SBVH builds L .
Kepler opt!mrzatlon

CUDA Interoperablhty

GPU Direct for GL interop buffers
LRU page replacement policy optimized

CPU FallbaCk Multiple |IT’i§?OI'tEiITCE Sampling sample BVH Reﬁnemen t

etAttribute(USED.

VICE_ORDINAL)

- ean cuFFT sample
Large node graphs optimized

Isosurface water sample

f'lj \ ﬁ ‘ Maximﬁ gupport

CUDA 5.0 Support

getGPUPagingActive Better multi-GPU load balancing

Faster compiles in many cases
Callable Programs
TeXt“ re IDS GPU Direct for RT_BUFFER_OUTPUT setUint(uint4)

Displacement mapping sample ChbAR Geersar Gonst CUDA NVVM 5 timfzation
PTX 3 support P

Avoid recompiles in many cases

Texture ID Support

57

OptiX 3.0 - Indirect References to Assets ,f,%

Indirect references enable
Lists of materials
Run-time swapping of materials without recompilation

User code AND compiled code are generic with respect to the chosen
textures

As part of our effort to extend the OptiX programming model to be more generic...

We wanted a way to provide indirect texture access.

58

<3

OptiX 3.0 - Texture ID Example AViDIA

Weighted | | Gradient
Blend Texture

I—I

Flower

Toaxtife Blue texture

59

Graph Layout

struct Bitmap {
int bindless id; // -1 unused
int texture type; // O-bitmap, l-blend

}ist of Bitmqp§ for Diffuse

I_istEImeni:O ListElement1

Buffer with\All Bitmap Information

TextureO Texture1 Texture3

<3

nvibiA

struct ListElement ({
int index in texture buffer;
float weight;

TextureN

60

Kepler Bindless Texture rf,%

OLD:

.tex .u64 diffuse_map;

tex.2d.v4.f32.132
{%f6,%f7,%f8,%f9}, [diffuse map, {%f1,%f2,%fF3,%f4}];

* NEW:
.reg .u64 diffuse_ind;

tex.2d.v4.132.132
{%f6,%f7,%f8,%f9}, [%sdiffuse i %f1,%F2,%F3,%F4}];

I’Il show you how this is manifested in Kepler PTX and then in OptiX

61

A
Texture IDs -

* Texture arrays offer indirection, too, but
No different sizes, formats, modes
Bindless texture also allows an infinite number of hardware textures

* We provide a software fallback for
Pre-Kepler GPUs
Out-of-core paging
CPU fallback

Bindless means indirect. Indirect means flexible programming

Bindless helps to avoid OptiX and OCG recompiles

OptiX bindless is more flexible than texture arrays (can have different sizes and modes)
rtTextureld is int and rtTextureSampler’s lifetime identifier

rtTextureld is independent of underlying SW/HW implementation

HW bindless on Kepler should be as fast as a switch statement of direct textures. We are
working on this

SW bindless fallback is 2-3X slower than SW fallback of direct texture (CPU, paging, pre-
Kepler)

HW bindless texture on Kepler is unlimited number of textures too

A new clamping modes are just to match OpenGL/CUDA.

62

BVH refit on all builders

Up to 8X faster SBVH builds L .
Kepler opt!mrzatlon

CUDA Interoperablllty

GPU Direct for GL interop buffers

LRU page replacement policy optimized

CPU FallbaCk Multiple Importance Sampling sample BVH Reﬁnemen t

- ContextGetAttribute(USED ST_M
EVICE_ORDINAL)
o 1) ean cuFFT sample

Large node graphs optimized

getG ?agingForc

Maxrmus support
Isosurface water sample

CUDA 5.0 Support

getGPUPag Better multi-GPU load balancing

Faster compiles in many cases
Callable Programs
TeXtu re IDS GPU Direct for RT_BUFFER_OUTPUT setUint(uint4)

Displacement mapping sample ChbAR Geersar Gonst GUID AL Moot it e
PTX 3 support p

Avoid recompiles in many cases

Callable Programs - making shade trees possible

63

Callable Programs

* Enables shade trees
* Selectable filtering, noise functions, gamma functions, etc.

Very highly requested capab

<3

nvibiA

64

: >,
Callable Programs - Device >

RT_CALLABLE_PROGRAM checker color(input_color, scale)
{

tile_size = make_uint2(launch_dim.x / N, launch_dim.y / N);
(launch_index.x/tile _size.x ” launch_index.y/tile size.y)
input_color * scale;

input_color;

}

rtCallableProgram(, get_color, (

RT_PROGRAM camera()
i
initial color;
// .. trace a ray, get the initial color ..
final_color = get_color(initial color, 0.5f);
// .. write new final color to output buffer ..

}

1) Note the float3 return type and RT_CALLABLE_PROGRAM

65

Callable Programs - Host rf,%

RTprogram color_program;
RTvariable color_program_variable;

rtProgramCreateFromPTXFile(context, ptx_path, “get_color”, &color_program);
rtProgramDeclareVariable(camera_program, “get color”, &color program variable);
rtVariableSetObject(color_program variable, color_program);

66

Heiko’s notes

Greg’s example
Marc’s shots

67

BVH refit on all builders

Up to 8X faster SBVH builds L .
Kepler opt!mrzatlon

CUDA Interoperablllty

GPU Direct for GL interop buffers

LRU page replacement policy optimized

CPU FallbaCk Multiple Importance Sampling sample BVH Reﬁnemen t

- ContextGetAttribute(USED ST_M
EVICE_ORDINAL)
o 1) ean cuFFT sample

Large node graphs optimized

getG ?agingForc

Maxrmus support
Isosurface water sample

CUDA 5.0 Support

getGPUPag Better multi-GPU load balancing

Faster compiles in many cases
Callable Programs
TeXtu re IDS GPU Direct for RT_BUFFER_OUTPUT setUint(uint4)

Displacement mapping sample ChbAR Geersar Gonst GUID AL Moot it e
PTX 3 support p

Avoid recompiles in many cases

CPU Fallback: This is the ability for your OptiX-based application to render on the CPU
when you don’t have an Nvidia GPU.

69

OptiX 3.0 - CPU Fallback <,

* Write once
Useful for new applications
One code path to maintain

Run anywhere (no NVIDIA driver required)
Windows, Linux, Mac
NVIDIA, AMD, Intel

* Available for applications with large installed bases
Example: Adobe After Effects CSé6
Companies can apply via: optix-help@nvidia.com

NVIDIA has shipped a lot of CUDA-capable, and thus OptiX-capable GPUs.

Why would we want to provide a CPU fallback?
The more broadly adopted the application, the more general the hardware support needs

to be - it’s also much more difficult for us to support.
As a result, we offer the CPU fallback feature only to select companies on a contractual

basis who serve a large and diverse user base.

70

CPU Fallback - In Use

* Same executable with no changes
* Run on NVIDIA hardware when present
Run on CPU when NVIDIA hardware or driver absent

* Application can choose CPU if desired

<3

nvibiA

71

1
Coming Soon!

In the near term - use OptiX 2.6 for production/shipping applications and the 3.0 Beta to
explore new capabilities and give us feedback - we read it ALL!

72

For Your Information

* setenv CUDA_VISIBLE_DEVICES 0,1,2
® Turn SLI off!

73

<3

nvibiA

For Your Information

* setenv OPTIX_API_CAPTURE 1

® Contact us at OptiX-Help@nvidia.com

You can mail us traces so we can reproduce bugs AND so we can optimize OptiX for your
use case

74

GTC 2013 | March 18-21 | San Jose, CA

The Smartest People. The Best Ideas. The Biggest Opportunities.

Opportunities for Participation:

SPEAK - Showcase your work among the elite
of graphics computing

- Call for Sessions: August 2012
- Call for Posters: October 2012

REGISTER - learn from the experts and network
with your peers

- Use promo code GM10SIGG for a 10% discount
SPONSOR - Reach influential IT decision-makers

Learn more at www.gputechconf.com

Last time we had OptiX talks by Lego, Audio, Adobe, and CCP Games. Next time we would love to have a talk
by you.

))) uniformly regarded as an essential resource for scientists,
developers, graphic artists, designers, researchers, engineers, and IT managers, who rely on GPUs to tackle
enormous computational challenges.

There are three ways you can participate...

(1) Speak - share your work and gain exposure as a leader in the visualization community.

(2) Register to attend and learn from the experts and network with your peers. Exclusive to Siggraph
attendees is a special 10% discount off the full conference rate. Use promo code GM10SIGG
through March 17, 2013. Registration for GTC 2013 will open in late November/early December.

(3) Sponsor and Exhibit - GTC attracts influential decision-makers from a broad range of industry
verticals, so this is a great event to reach people who manage significant IT budgets.

75

