
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

The OptiX engine works purely in compute.

OptiX is not a renderer, or even tied to rendering – it’s a programmable ray tracing
pipeline – much like OpenGL is for raster graphics.

It’s currently being used in offline rendering, interactive rendering, and tasks that never
produce an image – like collision detection, way-finding, acoustics, ballistics, sonar,
where to place cell towers – when ever you’re tracing rays.

OptiX is easy to develop with, and extremely flexible

It combines easily with OpenGL or Direct3D for hybrid possibilities that can enhance any
viewport

It’s highly programmable, allowing you to process custom surfaces (algorithms,
primitives, patches, NURBS) and have custom ray data – the “ray payload” – which is
what allows any application type.

In taking care of making ray tracing fast, OptiX allows developers to concentrate on
technique.

OptiX is good example of engines delivering the latest NVIDIA capabilities – giving a near
4X speed-up to applications as they run on GF100 (Fermi) GPUs.

25

26

27

28

29

30

31

32

33

Introducing OptiX 2.6.

2.6 is about one feature: Kepler support

BTW, all these 3D logos were made with the new ray traced renderer in Adobe After
Effects CS6, which is based upon OptiX.

34

2.6 is about providing one new feature: Kepler support.

It was made from the stable 2.5 code base.

If you are shipping to customers in the very near term, 2.6 is for you.

Not as much ray tracing perf comes for free

With OGL, D3D, and CUDA you see perf increases with each driver rev.

You will see speedups with each OptiX release as well. We have many more optimizations
to apply on Kepler and are actively working on that.

Perf per watt improvement

This is an initial implementation; we are hard at work optimizing.

The rest of the perf will come in the K20: more features, better perf

35

LLVM stands for… It’s a …

LLVM is a great leap forward for CUDA. It allows any language to work on the CUDA
platform and on OptiX.

36

It’s like having ten more people on your rendering team.

37

38

39

There are over thirty new features in OptiX 3.0 and I’d like to tell you about each one of
them. … but I won’t.

40

Interoperability (AKA “interop”) is the ability to share resources directly with other APIs
using the GPU.

OptiX has included Interop Support since day one for OpenGL and Direct3D, so you can
share textures and buffers without having to copy the data across the bus and through
your application. Many people have asked for OptiX interoperability with CUDA, and
we’re pleased to say that 3.0 includes this powerful capability.

41

42

The CUDA runtime has a context per device that you use.

43

44

As with contexts, we can share buffer data owned by the application, or the application
can share buffer data owned by OptiX.

45

Uses OptiX, CUDA, and OpenGL

All pairs line of sight, plus 64 curb feeler rays

Red ones move away from nearest red or green

Greens move away from nearest green but chase nearest red

46

Put Ocean talking points here.

47

Put Ocean talking points here.

48

SAY THIS WHILE OCEAN IS RUNNING

We wanted a way to allow apps to not worry about what devices they are running on.
7.4. Multi-GPU considerations
If the application provides or requests device pointers for all devices on which OptiX is running,
no additional data copies need to be made. However, whenever there is a mismatch between the
devices on which the application has provided or requested pointers and the devices on which
OptiX is running, OptiX will need to make sure that all of its devices have the necessary data.
Note that these issues can arise in some circumstances even when OptiX is only using one GPU. If
the application is running CUDA code on one GPU, but has instructed OptiX to only run on another
GPU, it is legal to use rtBufferSetDevicePointer to provide a device pointer on the non-OptiX GPU;
OptiX will handle any required data transfer internally.
7.4.1. When the application provides pointers to OptiX
If a device pointer is provided for one device but not for all OptiX devices, OptiX will allocate
memory on the missing devices and copy the buffer data from the provided pointer to the missing
devices during rtContextLaunch. It is a caught runtime error for the application to specify
pointers for more than one but less than all devices.
This implementation allows applications to be ignorant, if desired, of whether one or multiple
devices are being used for OptiX and whether CUDA is being run on the same or a different device
than OptiX. Conversely, the application may be fully in control of which devices run OptiX and
which devices run CUDA and fill each device’s copy of a buffer either by CUDA or by OptiX.
7.4.2. When the application receives pointers from OptiX
When the application requests a pointer from OptiX (to an RT_BUFFER_INPUT or
RT_BUFFER_INPUT_OUTPUT buffer), we assume that the application is modifying the data
contained in that buffer. Therefore we keep track of which OptiX devices the application has
requested pointers for, and if the application has requested only one pointer but there are
additional OptiX devices, we will copy the data from that device to all others on the next launch.
If the application requests pointers on all devices, we assume they have set up the data how they
want it, and no copying will happen. It is a caught runtime error to request pointers for more
than one but fewer than all devices.

49

By default any buffer you have a pointer to requires OptiX to copy its contents to other
devices.

The exception is if you have pointers to the buffer on all devices then we assume you
update it yourself.

But let’s say you don’t update the data every frame. Maybe just on the first frame. Then
you don’t want OptiX copying it superfluously.

Marking the buffer as COPY_ON_DIRTY means that we won’t copy unless you call
rtBufferMarkDirty.

50

The point: CUDA Interop avoids copies

51

BVH Refinement -

52

53

54

55

BVH Refinement with One refine per frame; One rebuild per eight frames

NVIDIA PhysX GPU Rigid Bodies

CUDA – OptiX Interop for geometry

OpenGL – OptiX Interop for TXAA

Glass shader with Fresnel reflection

About 350,000 triangles

Max ray depth of 12

56

Texture ID Support

57

As part of our effort to extend the OptiX programming model to be more generic…

We wanted a way to provide indirect texture access.

58

59

60

I’ll show you how this is manifested in Kepler PTX and then in OptiX

61

Bindless means indirect. Indirect means flexible programming
Bindless helps to avoid OptiX and OCG recompiles
OptiX bindless is more flexible than texture arrays (can have different sizes and modes)
rtTextureId is int and rtTextureSampler’s lifetime identifier
rtTextureId is independent of underlying SW/HW implementation
HW bindless on Kepler should be as fast as a switch statement of direct textures. We are
working on this
SW bindless fallback is 2‐3X slower than SW fallback of direct texture (CPU, paging, pre‐
Kepler)
HW bindless texture on Kepler is unlimited number of textures too
A new clamping modes are just to match OpenGL/CUDA.

62

Callable Programs – making shade trees possible

63

Very highly requested capab

64

1) Note the float3 return type and RT_CALLABLE_PROGRAM

65

66

Heiko’s notes

Greg’s example

Marc’s shots

67

CPU Fallback: This is the ability for your OptiX-based application to render on the CPU
when you don’t have an Nvidia GPU.

69

NVIDIA has shipped a lot of CUDA-capable, and thus OptiX-capable GPUs.
Why would we want to provide a CPU fallback?
The more broadly adopted the application, the more general the hardware support needs
to be – it’s also much more difficult for us to support.
As a result, we offer the CPU fallback feature only to select companies on a contractual
basis who serve a large and diverse user base.

70

71

In the near term – use OptiX 2.6 for production/shipping applications and the 3.0 Beta to
explore new capabilities and give us feedback – we read it ALL!

72

73

You can mail us traces so we can reproduce bugs AND so we can optimize OptiX for your
use case

74

Last time we had OptiX talks by Lego, Audio, Adobe, and CCP Games. Next time we would love to have a talk
by you.

NVIDIA’s GPU Technology Conference is uniformly regarded as an essential resource for scientists,
developers, graphic artists, designers, researchers, engineers, and IT managers, who rely on GPUs to tackle
enormous computational challenges.

There are three ways you can participate…

(1) Speak - share your work and gain exposure as a leader in the visualization community. As a
speaker you’ll receive many benefits that include:

• A complimentary Full Conference pass
• Discounted passes for your colleagues
• Access to exclusive speaker-only on-site amenities
• Audio capture and hosting of your session
• A unique opportunity to promote your name, your expertise, and your company

(2) Register to attend and learn from the experts and network with your peers. Exclusive to Siggraph
attendees is a special 10% discount off the full conference rate. Use promo code GM10SIGG
through March 17, 2013. Registration for GTC 2013 will open in late November/early December.

(3) Sponsor and Exhibit – GTC attracts influential decision-makers from a broad range of industry
verticals, so this is a great event to reach people who manage significant IT budgets.

75

