
GPU-Accelerated 2D and 
Web Rendering

Mark Kilgard



Talk Details

Location: West Hall Meeting Room 503, Los Angeles Convention Center
Date:  Wednesday, August 8, 2012
Time: 2:40 PM – 3:40 PM

Mark Kilgard (Principal Software Engineer, NVIDIA) 

Abstract: The future of GPU-based visual computing integrates the web, resolution-
independent 2D graphics, and 3D to maximize interactivity and quality while minimizing 
consumed power. See what NVIDIA is doing today to accelerate resolution-independent 2D 
graphics for web content. This presentation explains NVIDIA's unique "stencil, then cover" 
approach to accelerating path rendering with OpenGL and demonstrates the wide variety of web 
content that can be accelerated with this approach.

Topic Areas: GPU Accelerated Internet; Digital Content Creation & Film; Visualization

Level: Intermediate



Mark Kilgard

Principal System Software Engineer
OpenGL driver and API evolution
Cg (“C for graphics”) shading language
GPU-accelerated path rendering

OpenGL Utility Toolkit (GLUT) implementer
Author of OpenGL for the X Window System
Co-author of Cg Tutorial



GPUs are good at a lot of stuff



Games

Battlefield 3, EA



Data visualization



Product design

Catia



Physics simulation

CUDA N-Body



Interactive ray tracing

OptiX



Training



Molecular modeling

NCSA



Impressive stuff



What about advancing 2D graphics?



Can GPUs render & improve the immersive web?



What is path rendering?
A rendering approach

Resolution-independent two-dimensional 
graphics
Occlusion & transparency depend on rendering 
order

So called “Painter’s Algorithm”
Basic primitive is a path to be filled or stroked

Path is a sequence of path commands
Commands are

– moveto, lineto, curveto, arcto, closepath, 
etc.

Standards
Content: PostScript, PDF, TrueType fonts, 
Flash, Scalable Vector Graphics (SVG), HTML5 
Canvas, Silverlight, Office drawings
APIs: Apple Quartz 2D, Khronos OpenVG, 
Microsoft Direct2D, Cairo, Skia, Qt::QPainter, 
Anti-grain Graphics



Seminal Path Rendering Paper

John Warnock & Douglas Wyatt, Xerox PARC
Presented SIGGRAPH 1982
Warnock founded Adobe months later

John Warnock

Adobe founder



Path Rendering Standards

Document
Printing and
Exchange

Immersive
Web
Experience

2D Graphics
Programming
Interfaces

Office
Productivity
Applications

Resolution-
Independent
Fonts

OpenType

TrueType 

Flash

Open XML
Paper (XPS)

Java 2D
API

Mac OS X
2D API

Khronos API

Adobe Illustrator

Inkscape
Open Source 

Scalable
Vector
Graphics

QtGui
API

HTML 5



Live Demo

Yesterday’s New York Times rendered from

its resolution-independent formFlash content 

Classic PostScript content 

Complex text rendering



Last Year’s SIGGRAPH Results in Real-time

Ron Maharik, Mikhail Bessmeltsev, 
Alla Sheffer, Ariel Shamir and 
Nathan Carr
SIGGRAPH 2011, July 2011 

“Girl with Words in Her Hair” scene
591 paths
338,507 commands
1,244,474 coordinates



3D Rendering vs. Path Rendering
Characteristic GPU 3D rendering Path rendering

Dimensionality Projective 3D 2D, typically affine

Pixel mapping Resolution independent Resolution independent

Occlusion Depth buffering Painter’s algorithm

Rendering primitives Points, lines, triangles Paths

Primitive constituents Vertices Control points

Constituents per primitive 1, 2, or 3 respectively Unbounded

Topology of filled primitives Always convex Can be concave, self-intersecting, and have holes

Degree of primitives 1st order (linear) Up to 3rd order (cubic)

Rendering modes Filled, wire-frame Filling, stroking

Line properties Width, stipple pattern Width, dash pattern, capping, join style

Color processing Programmable shading Painting + filter effects

Text rendering No direct support (2nd class support) Omni-present (1st class support)

Raster operations Blending Brushes, blend modes, compositing

Color model RGB or sRGB RGB, sRGB, CYMK, or grayscale

Clipping operations Clip planes, scissoring, stenciling Clipping to an arbitrary clip path

Coverage determination Per-color sample Sub-color sample



CPU vs. GPU at
Rendering Tasks over Time

Pipelined 3D Interactive Rendering Path Rendering

Goal of NV_path_rendering is to make path rendering a GPU task

Render all interactive pixels, whether 3D or 2D or web content with the GPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

GPU
CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

GPU
CPU



What is NV_path_rendering?

OpenGL extension to GPU-accelerate path rendering
Uses “stencil, then cover” (StC) approach

Create a path object
Step 1: “Stencil” the path object into the stencil buffer

GPU provides fast stenciling of filled or stroked p aths
Step 2: “Cover” the path object and stencil test against its  coverage stenciled by the 
prior step

Application can configure arbitrary shading during the step
More details later

Supports the union of functionality of all major pa th rendering standards
Includes all stroking embellishments
Includes first-class text and font support
Allows functionality to mix with traditional 3D and  programmable shading



NV_path_rendering
Compared to Alternatives

Alternative APIs rendering same content

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

  
 1

0
0

x
1
0

0
 

  
 2

0
0

x
2
0

0
 

  
 3

0
0

x
3
0

0
 

  
 4

0
0

x
4
0

0
 

  
 5

0
0

x
5
0

0
 

  
 6

0
0

x
6
0

0
 

  
 7

0
0

x
7
0

0
 

  
 8

0
0

x
8
0

0
 

  
 9

0
0

x
9
0

0
 

 1
0
0
0
x
1
0
0

0
 

 1
1
0
0
x
1
1
0

0
 

Window Resolution in Pixels

F
ra

m
e
s 

p
e

r 
se

co
n

d

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO (16x)

Skia Ganesh Aliased (1x)

Direct2D GPU

Direct2D WARP

With Release 300 driver NV_path_rendering

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00
  
 1

0
0
x
1
0
0
 

  
 2

0
0
x
2
0
0
 

  
 3

0
0
x
3
0
0
 

  
 4

0
0
x
4
0
0
 

  
 5

0
0
x
5
0
0
 

  
 6

0
0
x
6
0
0
 

  
 7

0
0
x
7
0
0
 

  
 8

0
0
x
8
0
0
 

  
 9

0
0
x
9
0
0
 

 1
0

0
0
x
1
0
0
0
 

 1
1

0
0
x
1
1
0
0
 

Window Resolution in Pixels

F
ra

m
e
s 

p
e
r 

se
co

n
d

16x

8x

4x

2x

1x

Configuration

GPU:  GeForce 480 GTX (GF100)

CPU:  Core i7 950 @ 3.07 GHz

Alternative approaches 

are all much slower



Detail on Alternatives

Same results, changed Y Axis

-

50.00

100.00

150.00

200.00

250.00

  
 1

0
0
x
1
0
0
 

  
 2

0
0
x
2
0
0
 

  
 3

0
0
x
3
0
0
 

  
 4

0
0
x
4
0
0
 

  
 5

0
0
x
5
0
0
 

  
 6

0
0
x
6
0
0
 

  
 7

0
0
x
7
0
0
 

  
 8

0
0
x
8
0
0
 

  
 9

0
0
x
9
0
0
 

 1
0
0
0
x
1
0
0
0
 

 1
1
0
0
x
1
1
0
0
 

Window Resolution in Pixels

F
ra

m
e
s 

p
e
r 

se
co

n
d

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO (16x)

Skia Ganesh Aliased (1x)

Direct2D GPU

Direct2D WARP

Alternative APIs rendering same content

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00
  

 1
0

0
x

1
0

0
 

  
 2

0
0

x
2

0
0

 

  
 3

0
0

x
3

0
0

 

  
 4

0
0

x
4

0
0

 

  
 5

0
0

x
5

0
0

 

  
 6

0
0

x
6

0
0

 

  
 7

0
0

x
7

0
0

 

  
 8

0
0

x
8

0
0

 

  
 9

0
0

x
9

0
0

 

 1
0

0
0

x
1

0
0

0
 

 1
1

0
0

x
1

1
0

0
 

Window Resolution in Pixels

F
ra

m
e

s 
p

e
r 

se
co

n
d

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO (16x)

Skia Ganesh Aliased (1x)

Direct2D GPU

Direct2D WARP

Fast, but unacceptable 

quality

Configuration

GPU:  GeForce 480 GTX (GF100)

CPU:  Core i7 950 @ 3.07 GHz



Across an range of scenes…
Release 300 GeForce GTX 480 Speedups over Alternati ves

0.10

1.00

10.00

100.00

1000.00
   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

tiger
Welsh_dragon 

Celtic_round_dogsbutterfly spikesAmerican_Samoacowboy BuonaparteEmbrace_the_WorldYokozawa
Cougar        

tiger_clipped_by_heart

NVpr16/Cairo

NVpr16/SkiaBitmap

NVpr16/SkiaGanesh

NVpr16/Direct2D GPU

NVpr16/Direct2D WARP

Y axis is logarithmic—shows how many TIMES faster NV_path_rendering is that competitor



GeForce 650 (Kepler) Results

0.10

1.00

10.00

100.00
   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

   
10

0x
10

0 
   
20

0x
20

0 
   
30

0x
30

0 
   
40

0x
40

0 
   
50

0x
50

0 
   
60

0x
60

0 
   
70

0x
70

0 
   
80

0x
80

0 
   
90

0x
90

0 
 1
00

0x
10

00
 

 1
10

0x
11

00
 

Tiger
Welsh_dragon 

Celtic_round_dogs butterf ly spikes American_Samoa cow boy BuonaparteEmbrace_the_WorldYokozaw a
Cougar          

tiger_clipped_by_heart

NVpr16/Cairo

NVpr16/SkiaBitmap

NVpr16/SkiaGanesh

NVpr16/D2D

NVpr16/WARP



Tiger Scene on GeForce 650
Absolute Frames/Second on GeForce 650

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

   100x100    200x200    300x300    400x400    500x500    600x600    700x700    800x800    900x900  1000x1000  1100x1100 

Window resolution

F
ra

m
es

 p
er

 s
ec

on
d

NV_path_rendering (16x)

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO

Skia Ganesh 1x (aliased)

Direct2D GPU

Direct2D WARP

NVpr “peaks” at
1,800 FPS at 100x100

poor quality



NV_path_rendering is more than just
matching CPU vector graphics

3D and vector graphics mix

2D in perspective is free

Superior quality

Arbitrary programmable shader on paths—
bump mapping

�

GPU
� CPU
Competitors



Partial Solutions Not Enough

Path rendering has 30 years of heritage and history
Can’t do a 90% solution and Software to change

Trying to “mix” CPU and GPU methods doesn’t work
Expensive to move software—needs to be an unambiguo us win

Must surpass CPU approaches on all fronts
Performance
Quality
Functionality
Conformance to standards
More power efficient
Enable new applications

John Warnock

Adobe founder

Inspiration: Perceptive Pixel



Path Filling and Stroking

just filling just stroking 

filling + stroke =
intended content



Dashing Content Examples

Dashing character outlines for quilted look 

Frosting on cake is dashed
elliptical arcs with round
end caps for “beaded” look;
flowers are also dashing

Same cake
missing dashed
stroking details

Artist made windows 
with dashed line 

segment

Technical diagrams
and charts often employ 

dashing

All content shown
is fully GPU rendered



Excellent Geometric Fidelity for Stroking

Correct stroking is hard
Lots of CPU implementations 
approximate stroking

GPU-accelerated stroking avoids 
such short-cuts

GPU has FLOPS to compute true 
stroke point containment

GPU-accelerated OpenVG reference

Cairo Qt

� �

� �

Stroking with tight end-point curve



The Approach

“Stencil, then Cover” (StC)
Map the path rendering task from a sequential 
algorithm …
…to a pipelined and massively parallel task
Break path rendering into two steps

First, “stencil” the path’s coverage into stencil bu ffer
Second, conservatively “cover” path

Test against path coverage determined in the 1 st step
Shade the path
And reset the stencil value to render next path

Step 1

Stencil
Step 2:

Cover

repeat



Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

Texture
memory

Pixel assembly
(unpack)

Pixel operations

Pixel pack

Vertex pipelinePixel pipeline

Application

transform
feedback

read
back

Framebuffer

Raster operations

Path pipeline

Path specification

Transform path

Fill/Stroke

Stenciling

Fill/Stroke
Covering



Key Operations for Rendering
Path Objects

Stencil operation
only updates stencil buffer
glStencilFillPathNV , glStencilStrokePathNV

Cover operation
glCoverFillPathNV , glCoverStrokePathNV
renders hull polygons guaranteed to “cover” region updated by  
corresponding stencil

Two-step rendering paradigm
stencil, then cover (StC)

Application controls cover stenciling and shading o perations
Gives application considerable control

No vertex, tessellation, or geometry shaders active  during 
steps

Why?  Paths have control points & rasterized regions, not vertices, 
triangles



Let’s draw a green concave 5-point star

Path specification by string of a star
GLuint pathObj = 42;
const char *pathString ="M100,180 L40,10 L190,120 L1 0,120 L160,10 z";
glPathStringNV (pathObj, GL_PATH_FORMAT_SVG_NV,

strlen(pathString),pathString);

Alternative: path specification by data
static const GLubyte pathCommands[5] = {

GL_MOVE_TO_NV, GL_LINE_TO_NV, GL_LINE_TO_NV, GL_LINE_TO_NV, GL_LINE_TO_NV, 
GL_CLOSE_PATH_NV};
static const GLshort pathVertices[5][2] =

{ {100,180}, {40,10}, {190,120}, {10,120}, {160,10}  };
glPathCommandsNV (pathObj, 6, pathCommands, GL_SHORT, 10, pathVertic es);

Path Rendering Example (1 of 3)

even-odd fill style non-zero fill style 



Path Rendering Example (2 of 3)

Initialization
Clear the stencil buffer to zero and the color buff er to black 
glClearStencil (0);
glClearColor (0,0,0,0);
glStencilMask (~0);
glClear ( GL_COLOR_BUFFER_BIT| GL_STENCIL_BUFFER_BIT);

Specify the Path's Transform
glMatrixIdentityEXT ( GL_PROJECTION);
glMatrixOrthoEXT ( GL_MODELVIEW, 0,200, 0,200, -1,1); // uses DSA!

Nothing really specific to path rendering here

DSA = OpenGL’s Direct State Access extension (EXT_direct_state_access)



Path Rendering Example (3 of 3)

Render star with non -zero fill style 
Stencil path
glStencilFillPathNV (pathObj, GL_COUNT_UP_NV, 0x1F);

Cover path
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, 0x1F);
glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO);
glColor3f(0,1,0); // green
glCoverFillPathNV (pathObj, GL_BOUNDING_BOX_NV);

Alternative: for even -odd fill style
Just program glStencilFunc differently
glStencilFunc(GL_NOTEQUAL, 0, 0x1 ); // alternative mask

non-zero fill style 

even-odd fill style 



Specify a path
Specify arbitrary path transformation

Projective (4x4) allowed
Depth values can be generated for 
depth testing

Sample accessibility determined
Accessibility can be limited by any 
or all of

Scissor test, depth test, stencil 
test, view frustum, user-defined 
clip planes, sample mask, stipple 
pattern, and window ownership

Winding number w.r.t. the 
transformed path is computed

Added to stencil value of 
accessible samples

“Stencil, then Cover”
Path Fill Stenciling

path
front-end

projective
transform

clipping &
scissoring

window, depth
& stencil tests

path winding
number

computation

stencil
update:

+, -, or invert

stencil
buffer

per-sample
operations 

per-path
fill region

operations

path
object

stencil fill
path command

sample
accessibility

Fill
stenciling
specific



“Stencil, then Cover”
Path Fill Covering

Specify a path
Specify arbitrary path 
transformation

Projective (4x4) allowed
Depth values can be generated for 
depth testing

Sample accessibility determined
Accessibility can be limited by any 
or all of

Scissor test, depth test, stencil 
test, view frustum, user-defined 
clip planes, sample mask, stipple 
pattern, and window ownership

Conservative covering geometry 
uses stencil to “cover” filled path

Determined by prior stencil step

path
front-end

projective
transform

clipping &
scissoring

window, depth
& stencil tests

programmable
path

shading

stencil
update

typically zero

color
buffer

per-sample
operations 

per-path
fill region

operations

path
object

cover fill
path command

sample
accessibility

stencil
buffer

per-fragment or
per-sample

shading 



Adding Stroking to the Star

After the filling, add a stroked “rim ”
to the star like this…

Set some stroking parameters ( one-time ):
glPathParameterfNV (pathObj, GL_STROKE_WIDTH_NV, 10.5);
glPathParameteriNV (pathObj, GL_JOIN_STYLE_NV, GL_ROUND_NV);

Stroke the star
Stencil path
glStencilStrokePathNV (pathObj, 0x3, 0xF); // stroked samples marked 

“3”

Cover path
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_EQUAL, 3, 0xF); // update if sample marked “3”
glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO);
glColor3f(1,1,0); // yellow
glCoverStrokePathNV (pathObj, GL_BOUNDING_BOX_NV);

non-zero fill style 

even-odd fill style 



“Stencil, then Cover”
Path Stroke Stenciling

Specify a path
Specify arbitrary path transformation

Projective (4x4) allowed
Depth values can be generated for 
depth testing

Sample accessibility determined
Accessibility can be limited by any 
or all of

Scissor test, depth test, stencil 
test, view frustum, user-defined 
clip planes, sample mask, stipple 
pattern, and window ownership

Point containment w.r.t. the stroked 
path is determined

Replace stencil value of contained 
samples

path
front-end

projective
transform

clipping &
scissoring

window, depth
& stencil tests

stroke
point

containment

stencil
update:
replace

stencil
buffer

per-sample
operations 

per-path
fill region

operations

path
object

stencil stroke
path command

sample
accessibility

Stroke
stenciling
specific



“Stencil, then Cover”
Path Stroke Covering

Specify a path
Specify arbitrary path 
transformation

Projective (4x4) allowed
Depth values can be generated for 
depth testing

Sample accessibility determined
Accessibility can be limited by any 
or all of

Scissor test, depth test, 
stencil test, view frustum, 
user-defined clip planes, 
sample mask, stipple pattern, 
and window ownership

Conservative covering geometry 
uses stencil to “cover” stroked path

Determined by prior stencil step

path
front-end

projective
transform

clipping &
scissoring

window, depth
& stencil tests

programmable
path

shading

stencil
update

typically zero

color
buffer

per-sample
operations 

per-path
fill region

operations

path
object

cover stroke
path command

sample
accessibility

stencil
buffer

per-fragment or
per-sample

shading 



First-class, Resolution -independent
Font Support

Fonts are a standard, first-class part of all path rendering systems
Foreign to 3D graphics systems such as OpenGL and D irect3D, but natural for 
path rendering
Because letter forms in fonts have outlines defined  with paths

TrueType, PostScript, and OpenType fonts all use ou tlines to specify glyphs

NV_path_rendering makes font support easy
Can specify a range of path objects with

A specified font
Sequence or range of Unicode character points

No requirement for applications use font API to load glyphs
You can also load glyphs “manually” from your own glyph outlines
Functionality provides OS portability and meets needs of applications  
with mundane font requirements



Handling Common Path Rendering
Functionality: Filtering

GPUs are highly efficient at image filtering
Fast texture mapping

Mipmapping
Anisotropic filtering
Wrap modes

CPUs aren't really

� GPU

� Qt

� Cairo

Moiré
artifacts



Handling Uncommon Path Rendering
Functionality:  Projection

Projection “just works”
Because GPU does everything
with perspective-correct
interpolation



Projective Path Rendering Support Compared

� GPU
flawless

� Skia
yes, but bugs

� Cairo
unsupported

� Qt
unsupported

correct
wrong

correct
correct

unsupported
unsupported

unsupported
unsupported



Path Geometric Queries

glIsPointInFillPathNV
determine if object-space (x,y) position is inside or outside path, given  
a winding number mask

glIsPointInStrokePathNV
determine if object-space (x,y) position is inside the stroke of a path
accounts for dash pattern, joins, and caps

glGetPathLengthNV
returns approximation of geometric length of a given sub-range of  path 
segments

glPointAlongPathNV
returns the object-space (x,y) position and 2D tangent vector a  given 
offset into a specified path object
Useful for “text follows a path”

Queries are modeled after OpenVG queries



Accessible Samples of a Transformed Path

When stenciled or covered, a path is transformed by  OpenGL’s 
current modelview -projection matrix

Allows for arbitrary 4x4 projective transform
Means (x,y,0,1) object-space coordinate can be transformed to ha ve depth

Fill or stroke stenciling affects “accessible” sampl es
A samples is not accessible if any of these apply to the sample

clipped by user-defined or view frustum clip planes
discarded by the polygon stipple, if enabled
discarded by the pixel ownership test
discarded by the scissor test, if enabled
discarded by the depth test, if enabled

displaced by the polygon offset from glPathStencilDepthOffsetNV
discarded by the depth test, if enabled
discarded by the (implicitly enabled) stencil test

specified by glPathStencilFuncNV
where the read mask is the bitwise AND of the glPathStencilFuncNV read 
mask and the bit-inversion of the effective mask pa rameter of the stenciling 
operation



Mixing Depth Buffering and
Path Rendering

PostScript tigers surrounding Utah teapot
Plus overlaid TrueType font rendering
No textures involved, no multi-pass



Demo



3D Path Rendering Details
Stencil step uses
GLfloat slope = -0.05;
GLint bias = -1;
glPathStencilDepthOffsetNV (slope, bias);
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);

Stenciling step uses
glPathCoverDepthFuncNV (GL_ALWAYS);

Observation
Stencil step is testing—but not writing—depth

Stencil won’t be updated if stencil step fails dept h test at a sample
Cover step is writing—but not testing—depth 

Cover step doesn’t need depth test because stencil test would only pass if prior stencil 
step’s depth test passed

Tricky, but neat because minimal mode changes invol ved



Without glPathStencilDepthOffset
Bad Things Happen

Each tiger is layered 240 paths
Without the depth offset during the stencil step, a ll the—essentially co-planar —layers would 
Z-fight as shown below

terrible z-fighting artifacts



Path Transformation Process

Path
object

Modelview
matrix

Projection
matrix

User-defined
clip planes

View-frustum
clip planes

Object-space
color/fog/tex
generation

Eye-space
color/fog/tex
generation

to path
stenciling
or covering

object-space coordinates 

(x,y,0,1) 

eye-space coordinates 

(xe,ye,ze,we) + attributes 

clipped eye-space coordinates 

(xe,ye,ze,we) + attributes 

clip-space coordinates 

(xc,yc,zc,wc) + attributes 

clipped clip-space
coordinates 

(xc,yc,zc,wc) + attributes

color/fog/tex coords.

color/fog/tex
coordinates



Clip Planes Work with Path Rendering

Scene showing a Welsh dragon clipped to all 64 comb inations of 6 clip planes 
enabled & disabled



Path Rendering Works with
Scissoring and Stippling too

Scene showing a tiger 
scissoring into 9 regions
Tiger with two different 
polygon stipple patterns



Rendering Paths Clipped to
Some Other Arbitrary Path

Example clipping the PostScript tiger to a heart co nstructed from 
two cubic Bezier curves

unclipped tiger tiger with pink background clipped to heart



Complex Clipping Example

cowboy clip is
the union of 1,366 paths

tiger is 240 paths

result of clipping tiger
to the union of all the cowboy paths



Arbitrary Programmable GPU Shading with 
Path Rendering

During the “cover” step, you can do arbitrary fragme nt processing
Could be

Fixed-function fragment processing
OpenGL assembly programs
Cg shaders compiled to assembly with Cg runtime
OpenGL Shading Language (GLSL) shaders
Your pick—they all work!

Remember:
Your vertex, geometry, & tessellation shaders ignor ed during cover step

(Even your fragment shader is ignored during the “s tencil” step)



Example of Bump Mapping on
Path Rendered Text

Phrase “Brick wall!” is path rendered and bump mapped with a Cg 
fragment shader

light source position



Anti-aliasing Discussion

Good anti-aliasing is a big deal for path rendering
Particularly true for font rendering of small point  sizes
Features of glyphs are often on the scale of a pixe l or less

NV_path_rendering uses multiple stencil samples per pixel for reasona ble 
antialiasing

Otherwise, image quality is poor
4 samples/pixel bare minimum
8 or 16 samples/pixel is pretty sufficient

But 16 requires expensive 2x2 supersampling of 4x mu ltisampling
16x is extremely memory intensive

Alternative:  quality vs. performance tradeoff
Fast enough to render multiple passes to improve qu ality
Approaches

Accumulation buffer
Alpha accumulation



Anti-aliasing Strategy Benefits
Benefits from GPU ’s existing 
hardware AA strategies

Multiple color-stencil-depth 
samples per pixel

4, 8, or 16 samples per pixel
Rotated grid sub-positions
Fast downsampling by GPU
Avoids conflating coverage & 
opacity

Maintains distinct color sample 
per sample location

Centroid sampling
Fast enough for temporal 
schemes

>>60 fps means multi-pass 
improves quality

GPU
rendered
coverage NOT
conflated with
opacity

Cairo, Qt, Skia,
and Direct2D
rendered
shows dark
cracks artifacts
due to conflating
coverage with
opacity, notice
background
bleeding

artifacts 



Real
Flash

Scene 

conflation
artifacts abound,
rendered by Skia

same scene, GPU-rendered
without conflation

conflation is aliasing &
edge coverage percents
are un-predicable in general;
means conflated pixels
flicker when animated slowly 



GPU Advantages

Fast, quality filtering
Mipmapping of gradient color ramps essentially free
Includes anisotropic filtering (up to 16x)
Filtering is post -conversion from sRGB

Full access to programmable shading
No fixed palette of solid color / gradient / patter n brushes
Bump mapping, shadow mapping, etc.—it’s all availab le to you

Blending
Supports native blending in sRGB color space

Both colors converted to linear RGB
Then result is converted stored as sRGB

Freely mix 3D and path rendering in same framebuffe r
Path rendering buffer can be depth tested against 3 D
So can 3D rendering be stenciled against path rende ring

Obviously performance is MUCH better than CPUs



Improved Color Space:
sRGB Path Rendering

Modern GPUs have native support for 
perceptually-correct for

sRGB framebuffer blending
sRGB texture filtering
No reason to tolerate uncorrected linear RGB 
color artifacts!
More intuitive for artists to control

Negligible expense for GPU to perform 
sRGB-correct rendering

However quite expensive for software path 
renderers to perform sRGB rendering

Not done in practice

� linear RGB
transition between saturated
red and saturated blue has
dark purple region

� sRGB
perceptually smooth
transition from saturated
red to saturated blue

Radial color gradient example
moving from saturated red to blue 



Trying Out NV_path_rendering

Operating system support
2000, XP, Vista, Windows 7, Linux, FreeBSD, and Sol aris
Unfortunately no Mac support

GPU support
GeForce 8 and up (Tesla and beyond)
Most efficient on Fermi and Kepler GPUs
Current performance can be expected to improve

Shipping since NVIDIA’s Release 275 drivers
Available since summer 2011

New Release 300 drivers have remarkable NV_path_rendering performance
Try it, you’ll like it



Learning NV_path_rendering

White paper + source code available
“Getting Started with NV_path_rendering”

Explains
Path specification
“Stencil, then Cover” API usage
Instanced rendering for text and glyphs



NV_path_rendering SDK Examples

A set of NV_path_rendering examples of varying levels of complexity
Most involved example is an accelerated SVG viewer

Not a complete SVG implementation

Compiles on Windows and Linux
Standard makefiles for Linux
Use Visual Studio 2008 for Windows



Whitepapers

“Getting Started with NV_path_rendering”



Whitepapers

“Mixing 3D and Path Rendering”



SDK Example Walkthrough (1)
pr_basic —simplest example
of path filling & stroking

pr_hello_world —kerned, underlined,
stroked, and linear gradient filled text

pr_gradient —path with holes with texture appliedpr_welsh_dragon —filled layers



SDK Example Walkthrough (2)

pr_font_file —loading glyphs from a font file
with the GL_FONT_FILE_NV target

pr_korean —rendering UTF-8 string of Korean 
characters

pr_shaders —use Cg shaders
to bump map text with
brick-wall texture



SDK Example Walkthrough (3)

pr_text_wheel —render projected gradient
text as spokes of a wheel

pr_tiger —classic PostScript tiger rendered
as filled & stroked path layers

pr_warp_tiger —warp the tiger
with a free projective transform

click & drag the bounding rectangle
corners to change the projection 



SDK Example Walkthrough (4)

pr_tiger3d —multiple projected and depth tested 
tigers + 3D teapot + overlaid text

pr_svg —GPU-accelerated SVG viewer

pr_pick —test points to determine if they 
are in the filled and/or stroked region of a 
complex path



Conclusions

GPU-acceleration of 2D resolution-independent graphics is coming
HTML 5 and low-power requirements
are demanding it

“Stencil, then Cover” approach
Very fast
Quality, functionality, and features
Available today through NV_path_rendering

Shipping today
NV_path_rendering resources available



Questions?



More Information

Best drivers:  OpenGL 4.3 beta driver
www.nvidia.com/drivers

Grab the latest Beta drivers for your OS & GPU

Developer resources
http://developer.nvidia.com/nv-path-rendering
Whitepapers, FAQ, specification
NVprSDK —software development kit
NVprDEMOs —pre-compiled Windows demos
OpenGL Extension Wrangler (GLEW) has API support

Email:  nvpr-support@nvidia.com



Don’t Forget the 20 th Anniversary Party

Date: August 8th 2012 ( today! )
Location: JW Marriott Los Angeles at LA Live
Venue: Gold Ballroom – Salon 1



Other OpenGL -related
NVIDIA Sessions at SIGGRAPH

GPU Ray Tracing and OptiX
Wednesday in West Hall 503, 3:50 PM - 4:50 PM
David McAllister , OptiX Manager, NVIDIA
Phillip Miller , Director, Workstation Software Product Management, NVIDIA

Voxel Cone Tracing & Sparse Voxel Octree for Real-time Global Illumination
Wednesday in NVIDIA Booth, 3:50 PM - 4:50 PM
Cyril Crassin , Postdoctoral Research Scientist, NVIDIA Research

OpenSubdiv: High Performance GPU Subdivision Surface Drawing
Thursday in NVIDIA Booth, 10:00 AM - 10:30 AM
Pixar Animation Studios GPU Team , Pixar

nvFX : A New Scene & Material Effect Framework for OpenGL and DirectX
Thursday in NVIDIA Booth, 2:00 PM - 2:30 PM 
Tristan Lorach , Developer Relations Senior Engineer, NVIDIA


