
Massive Crowds on GPU

Siggraph 2012

Samuel Gateau

Context: Autodesk Project Geppetto

Autodesk People Power

Geppetto for 3DS Max

http://labs.autodesk.com/utilit

ies/geppetto/

http://labs.autodesk.com/utilities/geppetto/
http://labs.autodesk.com/utilities/geppetto/

Project Geppetto Preview

Context: NVIDIA Project Goals

Explore ways to accelerate the Geppetto project using the GPU as

much as possible

Accelerate overall crowd rendering performances for real-time

interaction and editing

Execute all the rendering processing steps efficiently on the gpu

Prove scaling

Optimize the data representation in memory

For best parallel computation performances

To minimize the footprint

Rendering characters

A Character is a regular 3D

model Geometry plus…

Skin

Skeleton

Repertoire

Clip library

Every frame for every characters

Animation of the Skeleton

Skinning the Geometry

Drawing the Skinned Geometry

Animation: Update Skeleton Pose

Update the Skeleton pose from a library of Mocaps (motion capture) and

the Motion Blend parameters for the current frame

Animation steps

Steps Details Geppetto Prototype

Animate Motion Blend

Standard frame animation for

the motion blend parameters

for the current frame and

character

CPU CPU

Animation steps

Steps Details Geppetto Prototype

Animate Motion Blend

Standard frame animation for

the motion blend parameters

for the current frame and

character

CPU CPU

Evaluate Skeleton Local Pose

For each joint:

Blend the joint values

coming from several

mocaps (up to 4)

CPU GPU

Animation steps

Steps Details Geppetto Prototype

Animate Motion Blend

Standard frame animation for

the motion blend parameters

for the current frame and

character

CPU CPU

Evaluate Skeleton Local Pose

For each joint:

Blend the joint values

coming from several

mocaps (up to 4)

CPU GPU

Evaluate Skeleton Absolute

Pose

For each joint:

Accumulate transformation

from joint to the skeleton

root

CPU GPU

Skinning: Update Geometry Surface

For every vertex of the geometry, displace vertex position & tangent

space according to the Skin weighting and Skeleton pose

Linear blending of deformed position

Skinning steps

Steps Details Geppetto Prototype

Evaluate Bind-Pose

Matrices

For each Skin Cluster:

Combine the joint pose

matrix with the skin binding

matrix

CPU GPU

Skinning steps

Steps Details Geppetto Prototype

Evaluate Bind-Pose

Matrices

For each Skin Cluster:

Combine the joint pose

matrix with the skin binding

matrix

CPU GPU

Evaluate Skinned

Surface

For each vertex:

For each influencing cluster:

Blend the deformed

position

(and tangent space)

CPU

Update a

skinned

vertex buffer

cache

GPU

Skinning is

happening in the

rendering pass

Drawing: Display skinned geometry

Display the skinned geometry with the material properties at the correct

location in the frame

- Shadow pass

- Beauty pass

Drawing step

Steps Details Geppetto Prototype

Drawing skinned surface

Once we provide the

skinned position and

tangent space, follow the

standard Vertex Shader

pipeline

GPU

Display the

skinned

vertex buffer

GPU

Include skinning

in the vertex

shader

Full processing per character per frame

Steps Complexity Scale Cost

Animate Motion Blend Once 1 0%

Evaluate Skeleton Local Pose
nbJoints

x nbBlendedMocaps
~30x2 1%

Evaluate Skeleton Absolute Pose nbJoints ~30 1%

Evaluate Bind-Pose Matrices nbClusters ~25 1%

Evaluate Skinned Surface

nbVertices

x nbInfluencingClusters

x nbViews (GPU version)

~1000x4x(2) 30%

Draw Skinned Surface nbViews

Max(

nbVertices,

nbPixels)

64%

How to execute Computation batches on the GPU ?

Compute pipeline

Cuda

OpenCL

DirectX Compute

OpenGL Compute

Graphics pipeline

Avoid the context switch

Using D3D10 or D3D11 features

GPU

COMPUTE

GRAPHICS

Computation batch with the Graphics Pipeline

Vertex Shader

Geometry

Shader

Fragment

Shader

Streamout

Rasterization

Input

Assembly

Output Merger

Compute Batch
0 1 2 3 4 5

Computation Batch with the Graphics Pipeline

Using Geometry Shader and

Streamout

Run one thread for every

destination element

Perform the compute kernel in

the Geometry Shader

Pass the VertexID from the

vertex shader as the thread

index

Source data bound to the shader

with a Shader Resource View as

Texture Buffer

Written data is bound as

Streamout buffer

Geometry

Shader

Streamout

Destination

Data

Source Data 0

Source Data 1

Vertex Shader

VertexID

Computation Batch

Compute Batch

Geometry

Shader

Streamout
Destination

Data

Source Data 0

Source Data 1

uint vsmain(in uint vID : SV_VertexID) : VTXID

{

 return vID;

}

[maxvertexcount(2)]

void gsmain(point uint indices[1] : VTXID,

 inout PointStream<float4> vouts : VOUT)

{

 float4 vals[2]

 compute(index, vals);

 vals.Append(vals[0]);

 vals.Append(vals[1]);

}

Buffer<float4> srcData0 : register(t0);

Buffer<float4> srcData1 : register(t1);

void compute(uint index,

 inout float4 vals[2])

{

 // Fetch from src data

 float4 foo = srcData0.Load(index);

 // compute something

 …

 // output

 vals[0] = float4(…);

 vals[1] = float4(…);

}

Vertex Shader

Compute platform
Compute kernel

Object Model Architecture

Geometry

Vertex Buffer

Index Buffer

Skeleton

Joint Layout

Joint Local Transform Buffer

Joint Absolute Transform Buffer

Skin

Joint Layout

Bind Transform Buffer

Skin Vertex Attribute Buffer

Deformer

Joint Bind Pose Transform Buffer

Bind Pose Map

Clip

Track Header Buffer

Time Keys Buffer

Value Keys Buffer

Repertoire

List of Clips grouped by motion

style

 Animation Pipeline

Full processing per character per frame

Steps

Animate Motion Blend

Evaluate Skeleton Local

Pose

Evaluate Skeleton

Absolute Pose

Evaluate Bind Pose

matrices

Evaluate Skinned Surface

Draw Skinned Surface

EvalSkeletonLocJoints

EvalPoseAbsJoints

EvalBindPoseMatrices

Skinning and

Drawing

Animation pipeline

BindPoseJoints EvalBindPoseMatrices

Skeleton

PoseAbsJoints

Deformer

BindPoseMap

Skin

BindTransforms

Skeleton

PoseAbsJoints
EvalPoseAbsJoints

Skeleton

PoseLocJoints

Skeleton

Layout Parents

EvalSkeletonLocJoints

Clips Value Keys

Clips Time Keys

Clips Headers

Motion Key

Frame

Skeleton

PoseLocJoints

Evaluate Skeleton Pose local joints

For each joints

{

 grab character motion key frame

 blend different poses translation and rotations

 write out local translation and rotation

}

EvalSkeletonLocJoints

Clips Value Keys

Clips Time Keys

Clips Headers

Motion Key

Frame

Skeleton

PoseLocJoints

Evaluate Skeleton Pose absolute joints

float4x4 locPoseTransform(uint jointId)

{

 return PoseLocJoints[jointId]

}

float4x4 evalPoseAbsJoint (uint jointId)

{

 int currentId = jointId;

 int currentParentId = ParentJoints[currentParentId];

 float4x4 transform = locPoseTransform(currentId);

 while (currentParentId != currentId)

 {

 currentId = currentParentId;

 currentParentId = ParentJoints[currentParentId];

 transform = mul(locPoseTransform(currentId), transform);

 }

 return transform;

}

Skeleton

PoseAbsJoints
EvalPoseAbsJoints

Skeleton

PoseLocJoints

Skeleton

Layout Parents

Evaluate BindPose Matrices

For each Joint in BindPoseMatrices

{

 int PoseJointID = BindPoseMap[JointID];

 Joint = PoseJoints[PoseJointID] * BindTransforms[JointID].invBindMat;

}

BindPoseJoints EvalBindPoseMatrices

Skeleton

PoseAbsJoints

Deformer

BindPoseMap

Skin

BindTransforms

Rendering Performance

Drawing is the bottleneck

Rendering many geometries cost…

1000 Characters @ 5000 Triangles = 5 MTTriangles per frame

With Shadow pass = 10 Mtri/frame

1.2BTriangles / s bandwith gives 120Hz peak perf

But in reality we perform at ~50%

The skinning (even with GPU) cost a lot

 ~ 30% compared to no skinning

Not tried Dual Quaternion yet, overall hope for a theoric ~20-25% improvement

Performance Considerations

Instancing is really an improvement if the rendering is CPU Bound by

the calls to rendering pipeline
Otherwise, it will still be GPU Bounded

But very useful anyway for crowds…

Animation

Performing the 3 animation steps is very small compared to rendering

5000 Characters at 32 joints (and 25 clusters)

 cost 1ms on the GPU (Quadro 5000) vs. ~20ms on CPU

150 Million joints per sec

Could go up to 75000 characters at 60Hz

Demo

Conclusion

Demonstrated a crowd animation playback pipeline running on the

GPU

Performing at 150 Million joints per secondes

Equivalent to 75000 Characters of 30 bones animated at 60Hz

Rendering is still the bottleneck costing ~50x the animation cost

Skinning on the GPU is a must of course

Instancing is a must

Need to explore LOD techniques

Need to add blend shape

Hopefully this work will make it to Geppetto 

Questions ?

sgateau@nvidia.com

Thanks to:

Michael Girard and Abdelhak Ouhlal at Autodesk for our cooperation

A

C

H

D

B

E
F

J K

G

M

L

A

C

H

D

B E

F

J

K

G

M

L

A

C H

D

B

E F

J K

G M L

A

C H

D

B

E F

J K

G M L

A

C

H

D

B

E
F

J K

G

M

L

A

C H

D

B

E F

J K

G M L

I

N O

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

A

B

C

D

E

F

G

H

J

K

L

M

A

B

C

D

E

F

G

H

J

K

L

M

Mocap

Library
Animation

A

C

H

D

B

E
F

J K

G

M

L

Skeleton

Animation Skinning Drawing

Motion

Blend

Skinning

A

C

H

D

B

E
F

J K

G

M

L

Skeleton Geometry

A

C H

D

B

E F

J K

G M L

Skin Skinned Geometry

EvalBindPose

Drawing

Skinned Geometry Frame

Drawing

Frame

Skinning

A

C

H

D

B

E
F

J K

G

M

L

Skeleton Geometry

A

C H

D

B

E F

J K

G M L

Skin Skinned Geometry

Drawing

Frame

Skinning

A

C

H

D

B

E
F

J K

G

M

L

Skeleton Geometry

A

C H

D

B

E F

J K

G M L

Skin

