GTC 2013 | March 18-21 | San Jose, CA The Smartest People. The Best Ideas. The Biggest Opportunities.

Opportunities for Participation:

SPEAK - Showcase your work among the elite of graphics computing

- Call for Sessions: August 2012
- Call for Posters: October 2012

REGISTER - learn from the experts and network with your peers

- Use promo code GM10SIGG for a 10% discount

SPONSOR - Reach influential IT decision-makers

Learn more at www.gputechconf.com

Mobile Visual Computing

Kari Pulli Senior Director, Research

Overview

- Tegra NVIDIA's mobile SOC (system-on-chip)
- OpenCV a de-facto standard API for computer vision
- FCam camera control for computational photography
- **CUDA** flexible image processing with Carma

ARM Enables Energy Efficient Computing

Personal Computing

ARM is Pervasive and Open

Tegra 3 SOC

4 + 1

- "companion core"
- "shadow core"
- built with a low-leakage process
 - lower peak performance

All cores identical

- the same code runs on all cores
- application programmer doesn't have to worry
 - power is adapted automagically

5 CPU Cores

Most Common Use Cases

Baming, Web, Email,

~20%

~80%

Active Standby

1 CPU Core Active
0 to 1.7 GHz
30 to 400 mW

ARM CPU Cores

Email

Web

2 CPU Cores Active
0 to 1.6 GHz
50 to 800 mW

ARM CPU Cores

4 CPU Cores Active
0 to 1.6 GHz
100 to 1600 mW

Gaming, Multimedia Apps

For the computation part of computer vision and computational photography

a de-facto standard

OpenCV

- optimized for Tegra (4x[ARM+NEON] + GPU)
- OpenCV4Tegra (version 2.4.2) in Tegra Android Dev. Prog. in August

OpenCV examples

- Stereo
- Tracking for Augmented Reality

Calibration

Rectification

HER HERE

ATRATEM

Matching

Flash stereo

(b) Right View

Stereo Images (flash)

(a) Left View

Augmented Reality (AR)

What

- visual tracking
- of some known environment
- overlay graphics

Conventional AR

- track markers
- track a picture

Augmented Reality (AR) with SLAM

SLAM: build the model as you go

- Simultaneous Localization and Mapping
- Examples of Visual SLAM
 - PTAM (2007, 2009)
 - DTAM (2011)

Overview of visual SLAM for AR

Simultaneous tracking and mapping

Frames \rightarrow

Parallel Tracking and Mapping for Small AR Workspaces

Extra video results made for ISMAR 2007 conference

Georg Klein and David Murray Active Vision Laboratory University of Oxford

PTAM (2007)

Open Source API for camera control for Computational Photography

- Nokia Linux phones
- NVIDIA Tegra 3 dev boards

What is it?

FCam is an open-source C++ API for easy and precise control of digital cameras. It allows full low-level control of all camera parameters on a per-frame basis, making it easy to rewrite the camera's autofocus routine, to capture a burst of images all with different parameters, and to synchronize the operation of the camera lens and flash with all of the above.

FCam is the result of the <u>Camera 2.0</u> joint research project on programmable cameras and computational photography between <u>Marc Levoy's</u> group in the <u>Stanford Computer Graphics</u> <u>Laboratory</u> and <u>Kari Pulli's team</u> at Nokia Research Center Palo Alto. A <u>paper</u> describing the FCam architecture, the motivation behind it, and some applications, was presented at SIGGRAPH 2010.

-

Traditional sensor model does not work for Comp. Photography

Real image sensors are pipelined

- while one frame exposing
- next one is being prepared
- previous one is being read out

Viewfinding / video mode:

- pipelined, high frame rate
- settings changes take effect sometime later

Still capture mode:

- need to know which parameters were used
- \rightarrow reset pipeline between shots \rightarrow slow

The FCam Architecture

No global state

- instead, state travels with image requests
- every stage in pipeline may have different state
- → allows deterministic, fast state changes
- Synchronize devices
 - flash
 - lens
 - capture sound
 - gyro

. . .

NVIDIA

NVIDIA.

NVIDIA Tegra 3 implementation

NVIDIA Tegra 3 implementation

V DONE HDR Image Preview

NVIDIA Tegra 3 implementation

V DONE HDR Image Preview

Fast linear-time performance

- For 5MP images
- Global TMO: 5ms
- Local TMO: 80ms
- Exposure fusion: ~200ms

CS 478 - Computational photography

Winter, 2012

←

A cutaway view showing some of the optical and electronic components in the Canon 5D, a modern single lens reflex (SLR) camera. In the first part of this course, we'll take a trip down the capture and image processing pipelines of a typical digital camera.

This is the <u>Stanford</u> <u>Frankencamera</u>, an experimental open-source camera we are building in our laboratory. It's bigger, heavier, and uglier than the Canon camera, but it runs Linux, and its metering, focusing, demosaicing, denoising, white balancing, and other postprocessing algorithms are programmable. We'll eventually be distributing this camera to researchers worldwide.

This is the Nokia N900, the first in a new generation of Linuxbased cell phones. It has a 5megapixel camera and a focusable Carl Zeiss lens. More importantly, it runs the same software as our Frankencamera, so it's programmable right down to its autofocusing algorithm.

This is a prototype Nvidia tablet featuring the Tegra 3 processor. It has stereo backfacing cameras, Android OS, and a ported implementation of our FCam API. Each student will receive a tablet for the duration of the course, to try his hands at mobile computational photography.

In the second part of the course, we'll consider problems in photography and how they can be solved computationally. One such problem is misfocus. By inserting a microlens array into a camera, one can record <u>light fields</u>. This permits a snapshot to be <u>refocused</u> after capture.

Most digital cameras capture movies as well as stills, but handshake is a big problem, as exemplified by the home video above. Fortunately, stabilization algorithms are getting very good; look at this <u>experimental</u> <u>result</u>. We'll survey the state-of-the-art in this evolving area.

Quarter

Winter, 2012

Units

3-4 (same workload) (+/NC or letter grade)

Time

Mon/Wed 2:30 - 3:45

Place

392 Gates Hall (graphics lab conference room) Course URL

cs478.stanford.edu

Discussion

CS478 @Piazza

Instructors

Jongmin Baek, Dave Jacobs, Kari Pulli (Guest Lecturer)

Office hours

Wed 3:45 - 5:00, Thurs 2:30 - 3:45, Gates 360

Prerequisite

An introductory course in graphics or vision, or CS 178; good programming skills *Televised?*

No

Non-photorealistic viewfinder

Mono Capture

Viewer

🌴 🄜 닉:11 🧃

Shader 2

CUDA for ARM Development Kit

CUDA GPU Tegra ARM CPU

Tegra 3 Quad-core ARM A9 Quadro 1000M (96 CUDA cores) Ubuntu Gigabit Ethernet SATA Connector HDMI, USB

Launch in early fall 2012 Pre-register on www.nvidia.com/CARMADevKit

500 Researchers

Around The Globe Interested In Doing Research Using CARMA

Summary

- Tegra a great platform for mobile visual computing
- OpenCV standard CV API optimized for Tegra
- FCam flexible camera control on Tegra dev board
- **CUDA** powerful image processing with Carma

GTC 2013 | March 18-21 | San Jose, CA The Smartest People. The Best Ideas. The Biggest Opportunities.

Opportunities for Participation:

SPEAK - Showcase your work among the elite of graphics computing

- Call for Sessions: August 2012
- Call for Posters: October 2012

REGISTER - learn from the experts and network with your peers

- Use promo code GM10SIGG for a 10% discount

SPONSOR - Reach influential IT decision-makers

Learn more at www.gputechconf.com