

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Devin Jensen August 2012

Altair Knows HPC

Altair is the only company that:

makes HPC tools...

develops HPC applications...

...and **uses** these to solve real HPC problems

500 Altair engineers worldwide

use HPC every day for

real-world modeling

& simulation

Innovation Intelligence®

26+

Years of Innovation

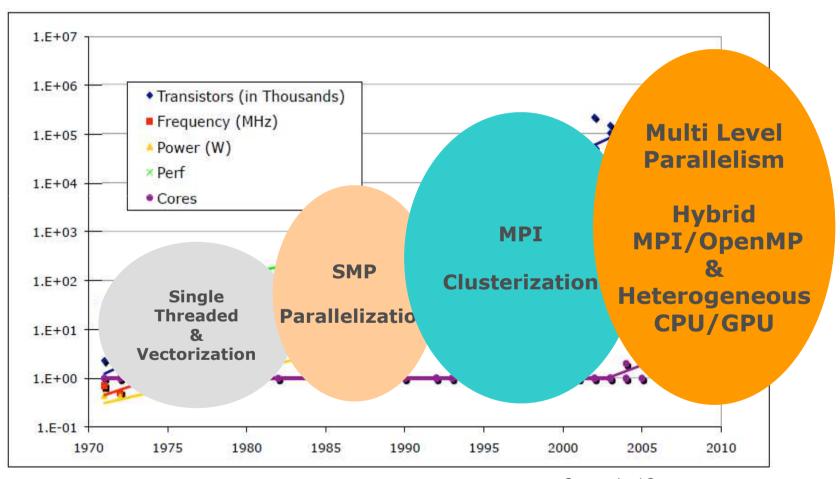
40+

Offices in 18 Countries

1500+

Employees Worldwide

Customers

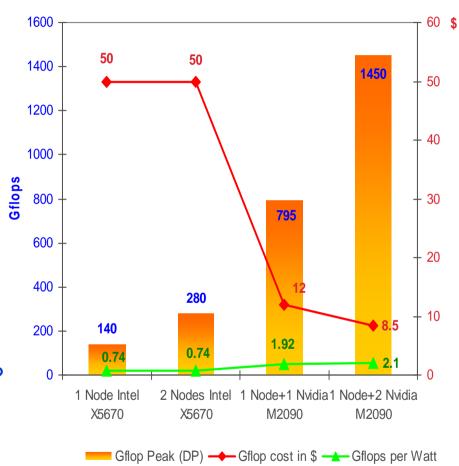


Automotive	Aerospace	Heavy Equipment	Government	Life/Earth Sciences	Consumer Goods	Energy
CHRYSLER	BAE SYSTEMS	ALSTOM JOHN DEERE	Argonne Argonne	■ ■ BASF The Chemical Company	Canon	ABB Chevron
M MAGNA	BOEING	CATERPILLAR® JFE	<i>△</i> AIST (Adecco Abbott	Henkel M	Schneider Electric
mazoa GM	GE Aircraft Engines	KOMATSU TATA		BAYER DOW	RICOH SAMSUNG	BR PETROBRAS
FAW TOYOTA	GENERAL DYNAMICS EADS	®HITACHI BOMBARDIER	U.S. AIR FORCE DLR	Fresenius Medical Care	intel IFM FUJITSU TESCO xerox	ConocoPhillips
PEUGEOT TATA	BOMBARDIER	NIPPON STEEL	OAK NASA	MERCK	⊕LG 🗳 🧲	SK holdings
SAIC SUMITOMO	Honeywell	中国铁建	RDGE National Laboratory	VALE ALCOA	Quanta Computer	Schlumberger
(FIII) ® HITACHI	Lufthansa	MITSUBISHI DSHKOSH	National Research Council Canada	sanofi aventis Das Wichtigste ist die Gesundheit	PHILIPS Microsoft WPDND	Reliance Industries Limited
BRIDGESTORE HYUNDRI	SFINMECCANICA	TOCHU DOOSAN	Sandia National Laboratories	lyondellbasell	SUZUK MOTOROLA	E x onMobil
HONDA O	Raytheon	Arcelor/Mittal		accenture High performance. Delivered.	KIRIN TOSHIBA Panasonic YMMADA FLEXTRONICS	SIEMENS Enel
♦	ROLLS United Technologies		NAVEA STATEME COMMAND	SMFG	P&G wistron	© EVONIK
RENAULT MISUSSHI DENSO	NORTHROP GRUMMAN	SWF	Los Alamos NATIONAL LACONATORY PST IMS	كبلىپ چمالەند	Johnson Controls	PETRONAS Federales habitated federal
DEN30					FUJIFILM PICTURES Unilever	ThyssenKrupp

3,200+ customers worldwide

Hardware Trends and Software Evolution

Source: Intel Corp.


Motivations to use GPU for Solvers

- Cost effective solution
- Power efficient solution

How much of the peak can we get?

- Which part of the code is best suited?
- How much coding effort is required?
- What will be the speedup for my application?

NVIDIA

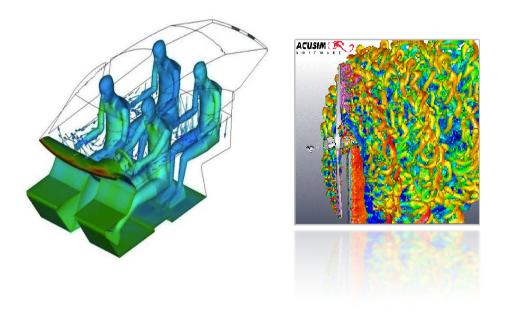
Ecosystem based on CUDA (+ OpenACC with CRAY, PGI and CAPS)

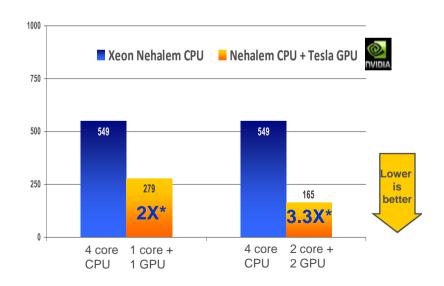
- Any NVIDIA graphic card supports CUDA
- Strong market presence

Products

- Tesla and Quadro GPUs based on the Fermi Architecture
- Announcement of Kepler Architecture, ~2X faster than Fermi, HyperQ, virtualization,...

AcuSolve GPU Porting on NVIDIA CUDA




- High performance computational fluid dynamics software (CFD)
- The leading finite element based CFD technology
- High accuracy and scalability on massively parallel architectures

S-duct

80K Degrees of Freedom

Hybrid MPI/OpenMP for Multi-GPU test

RADIOSS Porting on GPU

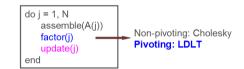
- Assess the potential of GPU for RADIOSS
- Focus on Implicit
 - Direct Solver
 - √ Highly optimized compute intensive solver
 - ✓ Limited scalability on multicores and cluster
 - Iterative Solver
 - ✓ Ability to solve huge problems with low memory requirement
 - ✓ Efficient parallelization
 - ✓ High cost on CPU due to large number of iterations for convergence
- Double Precision required
- Integrate GPU parallelization into our Hybrid parallelization technology

RADIOSS Porting on GPU & Accelerators

CUDA official version planned for HW12

- RADIOSS implicit direct solver and iterative solver available under Linux
- Support for NVIDIA Fermi and Kepler (K20 Q1'13)
- Altair RADIOSS presentation at GTC2012

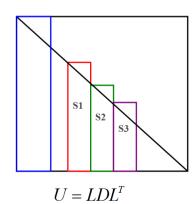
- Only RADIOSS Implicit Iterative Solver available under Linux and Windows
- Support for AMD FirePro
- Altair RADIOSS presentation at AFDS2011


RADIOSS Direct Solver GPU Porting

CUBLAS (DGEMM) – perfect candidate to speed up update module

- Frontal matrix could be too huge to fit in GPU memory
- Frontal matrix could be too small and thus inefficient w/ GPU
- Data transfer is not trivial
- Only the lower triangular matrix is interesting

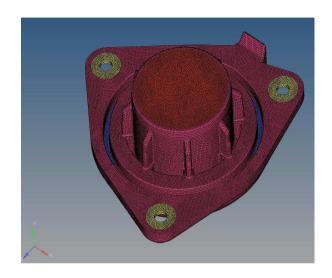
$$A = \left(\begin{array}{cc} B & V^t \\ V & C \end{array}\right)$$

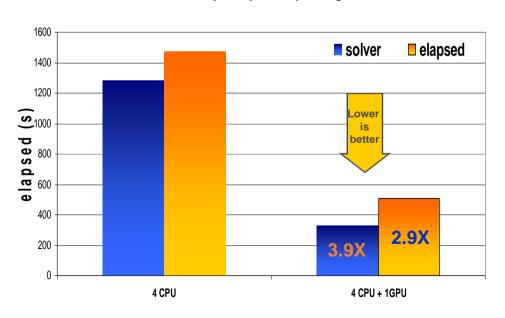

• Pivoting is required in real applications

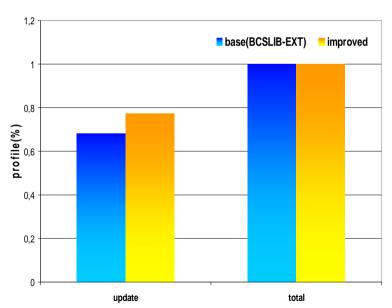
$$= \left(\begin{array}{c|c} L_B & 0 \\ VL_B^{-t} & I \end{array} \right) \left(\begin{array}{cc} I & 0 \\ 0 & C - VB^{-1}V^t \end{array} \right) \left(\begin{array}{cc} L_B^t & L_B^{-1}V^t \\ 0 & I \end{array} \right)$$

- Pivot searching is a sequential operation
- Factor module has limited parallel potential
- It could be as expensive as "update" module in extreme case

Asynchronous computing

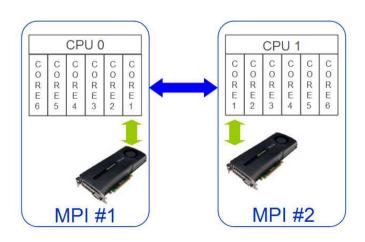

- Overlap the computation
- Overlap the communication


RADIOSS Direct Solver – Non Pivoting Case



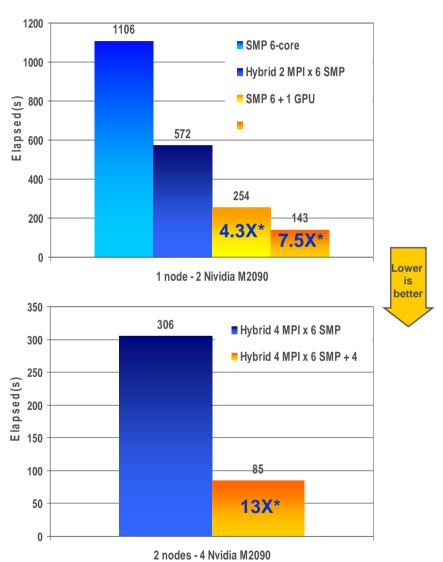
Linear static – Non Pivoting Case				
Benchmark	2.8 Millions of Degrees of Freedom			
Platform	Intel Xeon X5550, 4 Core, 48GB RAM NVIDIA C2070, CUDA 4.0 MKL 10.3, RHEL 5.1			

GPU speedup - non-pivoting case



RADIOSS Iterative Solver (Implicit)

- Preconditioned Conjugate Gradient (PCG) solves iteratively M^{-1} . (Ax b) = 0
 - Convergence speed depends on preconditioner M
 - Low memory consumption
 - Efficient parallelization: SMP, MPI
- Porting under CUDA
 - Few kernels to write in Cuda ⇒ Sparse Matrix Vector
 - Use of CUBLAS ⇒ DAXPY & DDOT
- Extend Hybrid to multi GPUs programming
 - MPI to manage communication between GPU
 - Portions of code not GPU enabled benefit from OpenMP parallelization
 - Programming model expandable to multi nodes with multiple GPUs



RADIOSS PCG – Linear Benchmark #2

Linear Problem	Linear Problem #2				
Hood of a car with pressure loads					
Refined model					
Compute displacements and stresses					
Benchmark	2.2 Millions of Degrees of Freedom				
	62 Millions of non zero				
	380000 Shells + 13000 Solids + 1100				
	RBE3				
	5300 iterations				
Platform	NVIDIA PSG Cluster – 2 nodes with:				
	Dual NVIDIA M2090 GPUs				
ON INVIDIA	CUDA v3.2				
	Intel Westmere 2x6 X5670@2,93Ghz				
	Linux RHEL 5.4 with Intel MPI 4.0				
Performance	Elapsed time decreased by up to 13X				

Multi GPUs performance is better for bigger models

GPU For Explicit?

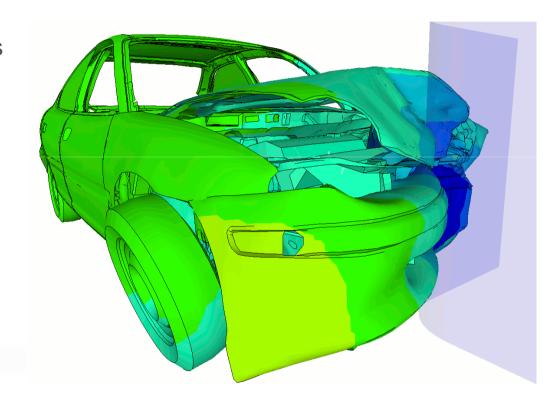
Explicit is very difficult to port on GPU

- Data movement between CPU and GPU current bottleneck
- Require full memory allocated on GPU and therefore full code ported
 - ✓ Huge development cost
 - ✓ Challenge of multiple code bases
- Potential gain remains small with current technology approach
 - ✓ Data locality and cache reuse is not possible on GPU
 - ✓ Memory size limitation

Follow hardware evolution

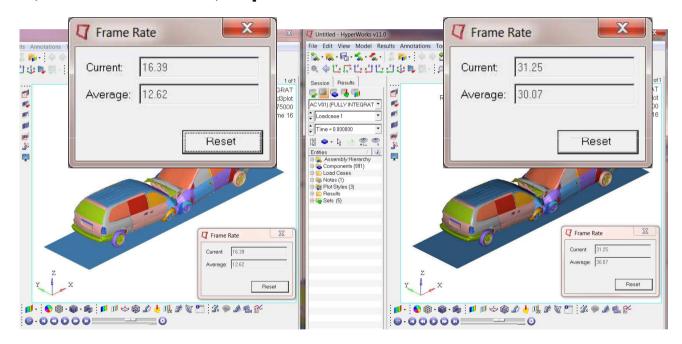
- AMD APU (CPU+GPU)
- Intel Xeon Phi
- NVIDIA through OpenACC initiative

Altair Solvers on NVIDIA GPUs


- RADIOSS implicit direct & iterative solvers have been successfully ported on NVIDIA GPU using CUDA
- Adding GPU improves performance of Altair solvers significantly
- For iterative solver, Hybrid MPP allows to run on multi GPU card workstation and GPU cluster with good scalability and enhanced performance
- GPU support for implicit solvers is planned for HyperWorks 12

HyperWorks 3D display

- OpenGL stereoscopic display in HyperMesh & HyperView
- Supported by NVIDIA graphics cards
- Compatible with NVIDIA 3D Vision glasses
- Available in HyperWorks 12.0



HyperView Performance Gains From Shaders

Gains in graphics performance – 2x to 6x improvement in animation frame rate, model rotation, & pan

Licensing Model for Solvers

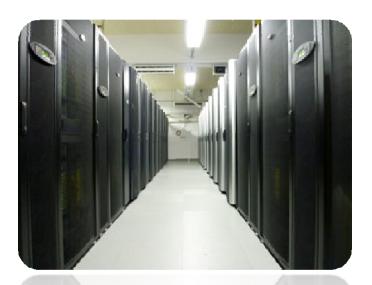
- Licensing has been set to encourage GPU testing
- One GPU is considered as one additional core only

Where does PBS Professional manage NVIDIA GPUs?

Tokyo Institute of Technology – TSUBAME 2.0

- Reliability
- Robust advance reservations
- GPU support
- Mixed architecture support (Linux, Windows)

~100,000 simultaneous jobs

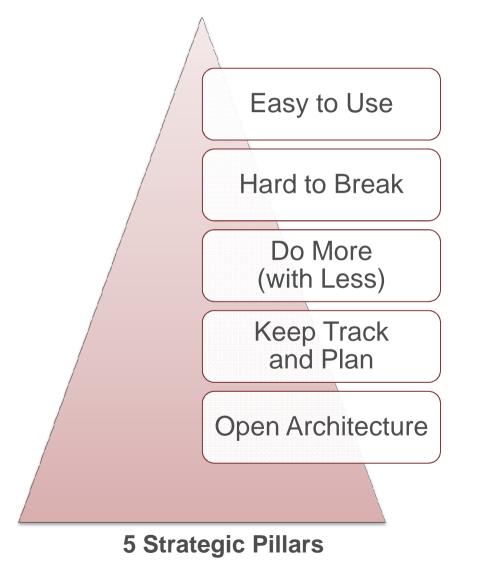

~2,000 users

2.4 Petaflops 17,984 cores 4,200 GPUs 80 TB mem 174 TB SSD 7 PB disk

PBS Professional offers THE best scalability in the industry...

TOP500° SUPERCOMPUTER SITES

HP's biggest Top500 machine

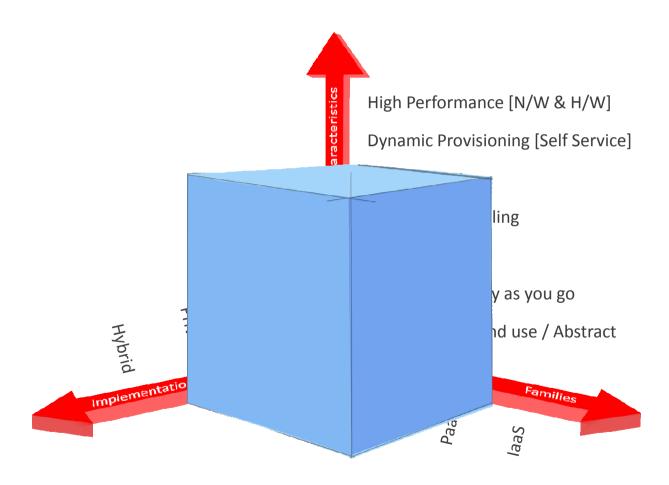


Decreed as one of the "Greenest Production Supercomputer in the World" on the June 2012 Green 500 List, for achieving a high level of energy-efficiency

Purpose-Built for High Performance Computing

IDC study (published 2009) on job scheduling ranked PBS Professional #1

Compute Manager


PBS Professional®

PBS **Analytics**™

Structure our Thoughts

End Users Needs

Focus on My Task / Project → **Deliver Results!**

Does have

Workstations

"Limited" Access to Software

Ideas, Innovation, Agility

Does NOT have

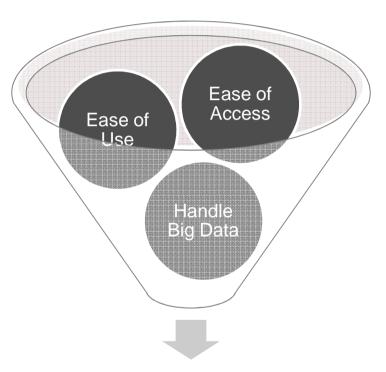
Expertise in IT Infrastructure
Sufficient compute resources
Financial / Abundance of Money

End Users Needs

Ease of Access: All you need is just a Browser to access HPC & Domain specific resources

Ease of Use: All you need is a browser based application hiding the complexity

Handle Big Data: All you need is a way to visualize the managed big data again through a browser based application


User Interface

Portals

Altair Enterprise Portals

HyperWorks Enterprise Applications

Compute Manager

Display Manager Simulation Manager Process Manager Performance Manager

COMPUTE MANAGER

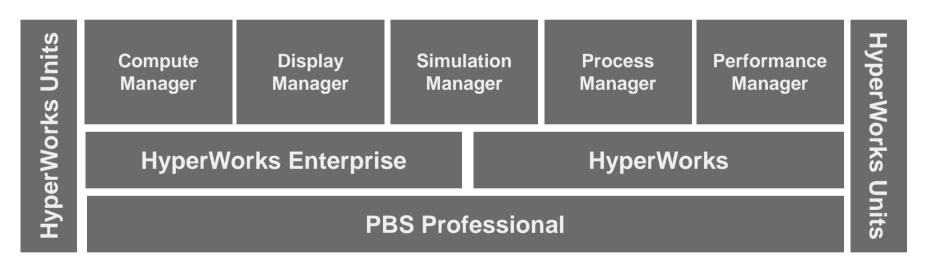
Ease of Use

Ease of Access

Handle Big Data

Compute Manager

Let's See


Compute Manager

Let's See

HyperWorks Enterprise

Complete Simulation Lifecycle Management

It is "HyperWorks in the Cloud"

Implementation Models

HYPERWORKS ON-DEMAND

A Public Cloud run by Altair

HyperWorks On-Demand: The Basics

State-of-the-art HPC computation nodes
Scalable up to 10,000 cores
QDR Non-blocking InfiniBand
Physical and cyber security

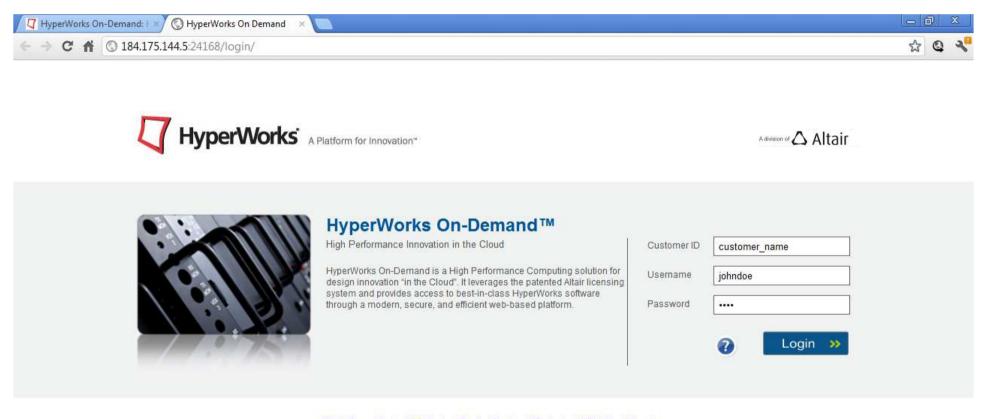
Scheduling
Security Framework
Licensing Framework
Remote Visualization
Framework
Notification Framework
Portal & Mash up Framework
Collaboration Framework

Resource Provisioning

Powered by PBS Professional & HyperWorks Enterprise

HyperWorks Solvers
HyperWorks Desktop¹
Altair Partner Alliance¹

1: coming soon


The High-Powered Altair Data Center

- Scalable, modular facility located in Troy, MI
- Can be easily extended to support up to more than 10,000 cores
- Incorporates extensive physical and cyber security measures
- Extremely high compute-power density
- A state-of-the-art facility for HPC simulation computing

HyperWorks On-Demand

Altair | HyperWorks | PBS Works | Product Design | HiQube | solidThinking | illumisys

Home | Contact | News | Events | Privacy | @ Copyright 2011 Altair Engineering, Inc. All Rights Reserved.

Altair's user portals is the gateway to HyperWorks On-Demand

Altair Knows HPC

Altair is the only company that:

makes HPC tools...

develops HPC applications...

...and **uses** these to solve real HPC problems

500 Altair engineers worldwide

use HPC every day for

real-world modeling

& simulation

For More Information

Contact Us

- Devin Jensen
- Director, Americas PBS Field Operations
- jensen@altair.com

Visit Us Online

- www.altair.com
- www.altairhyperworks.com
- www.pbsworks.com

Thanks, NVIDIA
Thank YOU!