

2

Accelerating high-end
compositing with CUDA in NUKE
Jon Wadelton

NUKE Product Manager

3

–  What is NUKE?

–  Image processing - exploiting the GPU

–  The Foundry Approach

–  Simple examples in NUKEX

–  Real world examples in NUKEX

–  Future research

–  What we learnt

Overview

4

–  NUKE is a node based compositing

system.

–  Designed to work at high quality,

large image sizes, large processing

nodes

–  All image processing traditionally

done on the CPU

–  Users extensively use ‘render farms’

to parallelise processing of frames

What is NUKE?

Xmen	
 First	
 Class	
 ©	
 2011	
 Fox	
 /	
 Marvel.	
 All	
 rights	
 reserved.	
 Images	
 courtesy	
 of	
 Digital	
 Domain	

5

•  CPUs

–  ‘easy’ to program not highly parallel

–  very flexible, can program anything and get OK

performance

•  GPUs

–  harder to program highly parallel

–  only really suitable for highly parallel workloads

•  Both are parallel, huge difference is in degree

•  Image processing likes parallelism. GPU beats the CPU.

Modern Compute Devices

6

•  CUDA/OpenCL > OpenGL

–  Allows for complex image processing! Eg. Motion estimation.

•  New opportunity to improve our software

–  reduce latency for the artist

–  increase throughput on renders

–  use existing algorithms in new situations

GPUs Come of Age For Complex Processing

7

•  We still need a CPU compute path

•  for CPU based render farms

•  CPUs are resources, we should use everything we can improve FLOPs.

•  for machines old or slow GPUs

•  CPU and GPU results must agree

•  not truly possible due to nature of the hardware

•  visually indistinguishable is the metric we need

Challenges

8

•  ‘Compute Landscape’ is changing rapidly

•  New hardware continually appearing, SSE, AVX, CUDA, OpenCL…

•  CPUs and GPUs are car crashing

•  Programming APIs are evolving and new ones appearing

•  Which winner do we back?

•  Will there even be a single ‘winner’?

More Challenges

9

•  Getting peak performance is a specialist task

•  You need to do it differently per device

•  Hand optimisation gets in the way of writing algorithms

Even More Challenges

10

•  Write multiple separate implementations for each

device?

•  Costly

•  Buggy

•  Needs redoing for each new hardware innovation

How do we solve this?

11

•  Or AKA “Righteous Image Processing”. RIP.

•  A multi-device image processing framework

•  Based on research done with Imperial College London

Introducing `Blink’

12

•  RIP is a domain specific C++ like languages for image

processing

•  We express operations as ‘kernels’

•  These are device independent and clear expressions of an

algorithm

RIP Overview

13

RIP Workflow

14

•  No

•  RIP is image processing domain specific

•  A device independent way to describe the algorithm

Doesn’t OpenCL Do That?

15

•  Parallelism is where is where FLOPs are

•  Algorithm’s data dependence is what constrains its parallelism

•  Explicit dependence = analysis free knowledge of parallelism

Data Dependence Is Key To Parallelism

16

•  Purely for image processing

•  Access to all data is abstracted and made explicit

•  Access patterns

•  Kernel types:

–  Regular

–  Reductions

–  Carry dependence

RIP Basic Design

17

•  Pattern of access at each point in iteration space is main abstraction

•  ‘tap’ i.e. the current point

•  1D or 2D range around the current iteration position

•  random access

•  Read or Write

•  Integer transforms

•  scale, rotate, translate, transpose

•  Edge conditions

Access Pattern Specifications

18

•  Process zero or more input images to one or more

output images,

–  any number of inputs or outputs

–  arbitrary access specifications on images

–  no dependencies between points in the iteration space

Regular Kernels

19

•  RIP	
 allows	
 for	
 data	
 carry	
 between	
 points	
 in	
 the	
 iteraGon	

space	

–  	
 classic	
 use	
 case	
 is	
 the	
 rolling	
 buffer	
 box	
 blur	

–  We	
 make	
 a	
 disGncGon	
 between	
 	

–  local	
 carries,	
 eg:	
 box	
 blur	

–  full	
 carries,	
 eg:	
 analysis	
 algorithms	

Carry Dependencies

20

21

22

23

24

25

26

•  Reductions combine all elements in a data structure in some way

–  e.g. find the sum of all the pixels in an image

Reductions

27

28

•  Floating point precision is finite

 (a+b)+(c+d) != ((a+b)+c)+d

•  Different ordering produces different results!

Problems with Reductions

29

•  Simple kernels

•  Introspection

•  Run-time code generation

DEMO – NUKE proto-typing plugin

30

•  NUKE nodes ported to RIP

•  CUDA for GPU, x86 for CPU

•  Non-trivial image processing:

–  Depth of field, motion estimation based retiming, motion

blur, denoising, convolution.

DEMO –Real World Algorithms in NUKEX

31

•  Dealing with large image sizes and finite GPU memory

–  NUKE CPU unit of work is one scanline

–  GPU favours bigger unit of work because of more cores

Porting RIP research to NUKE

32

•  Old CPU approach was brute force convolution

•  GPU port of CPU approach would hang GPU on large convolution

kernels

•  Moved to FFT approach, both on CPU (MKL) and GPU (CUDA

FFT)

•  RIP kernels used to resize convolution kernels, process layers,

do some special sauce processing to reduce artifacts

Post Process Depth of Field

33

•  Beef up our RIP processing graph

•  schedule CPU/GPU computation

•  stream inputs and outputs with CUDA

Future Work I

34

•  Kernel Fusion

•  munging multiple RIP kernels together to reduce memory access

•  not just point wise kernels, but complex ones as well

–  by exploiting explicit data dependencies

•  More caching

–  Deal with the IO bottle neck with fast IO. Eg FusionFX

Future Work II

35

•  Clang/LLVM rocks basis of our parsing and runtime x86

support

•  Breaking CPU/GPU agreement is occasionally necessary

•  Transfer times can be the killer, Kepler will help with this

What We Learnt

