

Accelerating high-end compositing with CUDA in NUKE

Jon Wadelton NUKE Product Manager

Overview

- What is NUKE?

- Image processing exploiting the GPU
- The Foundry Approach
- Simple examples in NUKEX
- Real world examples in NUKEX
- Future research
- What we learnt

What is NUKE?

- NUKE is a node based compositing system.
- Designed to work at high quality,
 large image sizes, large processing
 nodes
- All image processing traditionally done on the CPU
- Users extensively use 'render farms' to parallelise processing of frames

Xmen First Class © 2011 Fox / Marvel. All rights reserved. Images courtesy of Digital Domain

Modern Compute Devices

• CPUs

- 'easy' to program not highly parallel
- very flexible, can program anything and get OK performance
- GPUs
 - harder to program highly parallel
 - only really suitable for highly parallel workloads
- Both are parallel, huge difference is in degree
- Image processing likes parallelism. GPU beats the CPU.

GPUs Come of Age For Complex Processing

- CUDA/OpenCL > OpenGL
 - Allows for complex image processing! Eg. Motion estimation.

- New opportunity to improve our software
 - reduce latency for the artist
 - increase throughput on renders
 - use existing algorithms in new situations

Challenges

- We still need a CPU compute path
 - for CPU based render farms
 - CPUs are resources, we should use everything we can improve FLOPs.
 - for machines old or slow GPUs

- CPU and GPU results <u>must</u> agree
 - not truly possible due to nature of the hardware
 - visually indistinguishable is the metric we need

More Challenges

- 'Compute Landscape' is changing rapidly
 - New hardware continually appearing, SSE, AVX, CUDA, OpenCL...
 - CPUs and GPUs are car crashing
 - Programming APIs are evolving and new ones appearing

- Which winner do we back?
- Will there even be a single 'winner'?

Even More Challenges

- Getting peak performance is a specialist task
 - You need to do it differently per device
 - Hand optimisation gets in the way of writing algorithms

How do we solve this?

- Write multiple separate implementations for each device?
 - Costly
 - Buggy
 - Needs redoing for each new hardware innovation

Introducing `Blink'

• Or AKA "Righteous Image Processing". **RIP.**

• A multi-device image processing framework

• Based on research done with Imperial College London

RIP Overview

- RIP is a domain specific C++ like languages for image processing
- We express operations as 'kernels'
- These are device independent and clear expressions of an algorithm

RIP Workflow

Doesn't OpenCL Do That?

• No

• RIP is image processing domain specific

• A device independent way to describe the algorithm

Data Dependence Is Key To Parallelism

• Parallelism is where is where FLOPs are

• Algorithm's data dependence is what constrains its parallelism

• Explicit dependence = analysis free knowledge of parallelism

RIP Basic Design

- Purely for image processing
- Access to all data is abstracted and made explicit
 - Access patterns
 - Kernel types:
 - Regular
 - Reductions
 - Carry dependence

Access Pattern Specifications

- Pattern of access at each point in iteration space is main abstraction
 - 'tap' i.e. the current point
 - 1D or 2D range around the current iteration position
 - random access
- Read or Write
- Integer transforms
 - scale, rotate, translate, transpose
- Edge conditions

Regular Kernels

- Process zero or more input images to one or more output images,
- any number of inputs or outputs
- arbitrary access specifications on images
- no dependencies between points in the iteration space

Carry Dependencies

- RIP allows for data carry between points in the iteration space
- classic use case is the rolling buffer box blur
- We make a distinction between
 - local carries, eg: box blur
 - full carries, eg: analysis algorithms

Reductions

• Reductions combine all elements in a data structure in some way

e.g. find the sum of all the pixels in an image

Problems with Reductions

• Floating point precision is finite

(a+b) + (c+d) != ((a+b)+c)+d

• Different ordering produces different results!

DEMO – NUKE proto-typing plugin

- Simple kernels
- Introspection
- Run-time code generation

DEMO – Real World Algorithms in NUKEX

- NUKE nodes ported to RIP
- CUDA for GPU, x86 for CPU
- Non-trivial image processing:
 - Depth of field, motion estimation based retiming, motion blur, denoising, convolution.

Porting RIP research to NUKE

- Dealing with large image sizes and finite GPU memory
- NUKE CPU unit of work is one scanline
- GPU favours bigger unit of work because of more cores

Post Process Depth of Field

- Old CPU approach was brute force convolution
- GPU port of CPU approach would hang GPU on large convolution kernels
- Moved to FFT approach, both on CPU (MKL) and GPU (CUDA FFT)
- RIP kernels used to resize convolution kernels, process layers, do some special sauce processing to reduce artifacts

Future Work I

- Beef up our RIP processing graph
 - schedule CPU/GPU computation
 - stream inputs and outputs with CUDA

Future Work II

- Kernel Fusion
- munging multiple RIP kernels together to reduce memory access
- not just point wise kernels, but complex ones as well
- by exploiting explicit data dependencies

- More caching
- Deal with the IO bottle neck with fast IO. Eg FusionFX

What We Learnt

Clang/LLVM rocks basis of our parsing and runtime x86 support

• Breaking CPU/GPU agreement is occasionally necessary

• Transfer times can be the killer, Kepler will help with this

