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–  What is NUKE? 

–  Image processing - exploiting the GPU 

–  The Foundry Approach 

–  Simple examples in NUKEX 

–  Real world examples in NUKEX 

–  Future research 

–  What we learnt 

 

Overview 
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–  NUKE is a node based compositing 

system. 

–  Designed to work at high quality, 

large image sizes, large processing 

nodes 

–  All image processing traditionally 

done on the CPU 

–  Users extensively use ‘render farms’ 

to parallelise processing of frames 

What is NUKE? 
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•   CPUs 

–  ‘easy’ to program not highly parallel 

–  very flexible, can program anything and get OK 

performance 

•   GPUs 

–  harder to program highly parallel 

–  only really suitable for highly parallel workloads 

•  Both are parallel, huge difference is in degree 

•  Image processing likes parallelism. GPU beats the CPU. 

 

Modern Compute Devices 
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•  CUDA/OpenCL > OpenGL 

–  Allows for complex image processing!  Eg. Motion estimation. 

 

•  New opportunity to improve our software 

–  reduce latency for the artist 

–  increase throughput on renders 

–  use existing algorithms in new situations 

GPUs Come of Age For Complex Processing 
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•  We still need a CPU compute path 

•   for CPU based render farms 

•   CPUs are resources, we should use everything we can improve FLOPs. 

•   for machines old or slow GPUs 

 

•   CPU and GPU results must agree 

•   not truly possible due to nature of the hardware 

•   visually indistinguishable is the metric we need 

Challenges 
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•  ‘Compute Landscape’ is changing rapidly 

•   New hardware continually appearing, SSE, AVX, CUDA, OpenCL… 

•   CPUs and GPUs are car crashing 

•   Programming APIs are evolving and new ones appearing 

 

•   Which winner do we back?  

•   Will there even be a single ‘winner’? 

More Challenges 
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•  Getting peak performance is a specialist task 

•   You need to do it differently per device 

•   Hand optimisation gets in the way of writing algorithms 

 

Even More Challenges 
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•  Write multiple separate implementations for each 

device? 

•  Costly 

•  Buggy 

•  Needs redoing for each new hardware innovation 

 

How do we solve this? 
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•  Or AKA “Righteous Image Processing”. RIP. 

•   A multi-device image processing framework 

 

•   Based on research done with Imperial College London 

Introducing `Blink’ 
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•  RIP is a domain specific C++ like languages for image 

processing 

•   We express operations as ‘kernels’ 

•   These are device independent and clear expressions of an 

algorithm 

RIP Overview 
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RIP Workflow 
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•  No 

•  RIP is image processing domain specific 

•  A device independent way to describe the algorithm 

 

Doesn’t OpenCL Do That? 
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•   Parallelism is where is where FLOPs are 

•   Algorithm’s data dependence is what constrains its parallelism 

 

•  Explicit dependence = analysis free knowledge of parallelism 

  

Data Dependence Is Key To Parallelism  
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•   Purely for image processing 

•   Access to all data is abstracted and made explicit  

•  Access patterns 

•  Kernel types: 

–  Regular 

–  Reductions 

–  Carry dependence 

RIP Basic Design 
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•   Pattern of access at each point in iteration space is main abstraction 

•   ‘tap’ i.e. the current point 

•   1D or 2D range around the current iteration position 

•   random access 

•  Read or Write 

•  Integer transforms  

•   scale, rotate, translate, transpose 

•   Edge conditions 

Access Pattern Specifications 
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•  Process zero or more input images to one or more 

output images, 

–   any number of inputs or outputs 

–   arbitrary access specifications on images 

–  no dependencies between points in the iteration space 

Regular Kernels 
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•  RIP	
  allows	
  for	
  data	
  carry	
  between	
  points	
  in	
  the	
  iteraGon	
  
space	
  

–  	
  classic	
  use	
  case	
  is	
  the	
  rolling	
  buffer	
  box	
  blur	
  

–  We	
  make	
  a	
  disGncGon	
  between	
  	
  

–  local	
  carries,	
  eg:	
  box	
  blur	
  

–  full	
  carries,	
  eg:	
  analysis	
  algorithms	
  

Carry Dependencies 
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•   Reductions combine all elements in a data structure in some way 

 

–   e.g. find the sum of all the pixels in an image 

Reductions 
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•   Floating point precision is finite 

 

               (a+b)+(c+d) != ((a+b)+c)+d 

 

•   Different ordering produces different results! 

Problems with Reductions 
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•  Simple kernels 

•  Introspection 

•  Run-time code generation 

DEMO – NUKE proto-typing plugin 
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•  NUKE nodes ported to RIP 

•  CUDA for GPU, x86 for CPU 

•  Non-trivial image processing: 

–  Depth of field, motion estimation based retiming, motion 

blur, denoising, convolution. 

DEMO –Real World Algorithms in NUKEX 
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•  Dealing with large image sizes and finite GPU memory 

–   NUKE CPU unit of work is one scanline 

–   GPU favours bigger unit of work because of more cores 

 

Porting RIP research to NUKE 
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•  Old CPU approach was brute force convolution 

•  GPU port of CPU approach would hang GPU on large convolution 

kernels 

•  Moved to FFT approach, both on CPU ( MKL ) and GPU ( CUDA 

FFT ) 

•  RIP kernels used to resize convolution kernels, process layers, 

do some special sauce processing to reduce artifacts 

Post Process Depth of Field 
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•  Beef up our RIP processing graph 

•  schedule CPU/GPU computation 

•  stream inputs and outputs with CUDA 

Future Work I 
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•  Kernel Fusion 

•   munging multiple RIP kernels together to reduce memory access 

•   not just point wise kernels, but complex ones as well 

–   by exploiting explicit data dependencies 

•  More caching 

–  Deal with the IO bottle neck with fast IO.  Eg FusionFX 

Future Work II 
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•  Clang/LLVM rocks basis of our parsing and runtime x86 

support 

•  Breaking CPU/GPU agreement is occasionally necessary 

•  Transfer times can be the killer, Kepler will help with this 

What We Learnt 


