
Scott Le Grand, Principal Engineer, AWS

Molecular Dynamics, GPUs, and EC2

AMBER

An MD simulation package and a set of MD force fields

PMEMD is a subset of the MD simulation package
optimized for production use

12 versions as of 2012

GPU support since AMBER 11

Molecular Dynamics on GPUs

On a CPU, the dominant performance spike is:

If we naively ported this to a GPU, it would die the death
of a thousand race conditions and memory overwrites

Solution: Map the problem into many subtasks and
reduce the results

for (i =0; i < N; i++)

 for (j = i + 1; j < N; j++)

 Calculate fij, fji;

Two Ways to Map, Many Ways to Reduce

Subtasks can be determined by:

1. Dividing work into spatially separated calculations
that dump their results into unique preassigned
accumulation buffers for later reduction

2. If memory is tight or the problem is large, then
further divide the calculation into discrete phases
that recycle a smaller subset of such buffers

CUDA port relies on method #1

3 Precision Models

DPDP Double-precision forces and accumulation

SPDP Single-precision forces, double-precision
 accumulation

SPSP Single-precision forces, single-precision
 accumulation

Why Multiple Precision Models

• Double-precision on GPUs eats registers and cache
but is potentially overkill applied across the board

• Suspected single-precision was insufficient

• SPDP hopefully hits the sweet point between them

Dynamic Range

32-bit floating point has approximately 7 significant
figures

When it happens: PBC, SHAKE, and Force Accumulation.

 1.456702

+0.3046714

 1.761373

-1.456702

0.3046710

Lost a sig fig

 1456702.0000000

+ 0.3046714

 1456702.0000000

-1456702.0000000

 0.0000000

Lost everything.

Dynamic Range Matters… A Lot…

Energy Conservation, Explicit Solvent

(kT/ns/d.o.f)

DHFR dt=1.0fs dt=2.0fs, SHAKE

CPU 0.000001 -0.000047

DPDP 0.000024 -0.000101

SPDP 0.000050 -0.000066

SPSP 0.001171 3.954495

Gromacs 4 0.011000 0.005000

Desmond 0.017000 0.001000

NAMD 0.023000 ----------

(Relative*) Performance

*Relative to 48 to 256 nodes of a Cray XT5 that is…

It’s Green™ too…

0

10000

20000

30000

40000

50000

60000

70000

80000

GPU System

192 Nodes of Cray XT5

220

72000

P
o

w
e
r

U
s
a
g

e
 (

W
)

Power Usage for GPU vs CPU run of 40ns/day DHFR MD
simulation

You Don’t Know JAC

(Production DHFR Benchmark)…

JAC stands for the Joint AMBER CHARMM Production DHRF
Benchmark

JAC Production DHFR Benchmark specifies a specific
combination of specific simulation conditions (especially the
timestep)

Change any one of those conditions and it’s no longer the
JAC Production DHFR Benchmark (especially the timestep)

If we’re going to allow the equivalent of steroids and blood-
doping here, I can probably take AMBER to ~1
microsecond/day on a single GPU but is that productive or
useful to anyone but marketing?

Can’t we all just get along?

GTX 680: The Bad News First…

Naively ported GPU apps suffer miserably due to:

 Increased operational latency (768 threads per SM
increases to 1,280 threads per SMX)

 Despite this, each Kepler SMX has the same amount of
shared memory as a Fermi SM

 Lousy double-precision performance (~128 GFLOPs)

 Inefficient allocation of registers by nvcc leads to
increased spillage and wasted registers

 But hey, it’s a low-end chip, what do you expect?

Initial GTX 680 Performance

0

10

20

30

40

50

60

JAC NVE Factor IX NVE

C2050

M2090

GTX580

GTX680

GTX 680: Now The Good News

Despite my initial shock and grumbling, I *love* GTX
680

 Twice the registers

 3x faster Atomic Ops

 Twice the single-precision and integer ops

 __shfl allows warps to share register data as a
workaround for not adding more shared memory

Use shfl and registers instead of SMEM

Move 32-bit quantities shared within warps to
registers

Access them with __shfl instruction

Now increase the thread count to exploit the freed up
SMEM

Leave 64-bit quantities in SMEM (no 64-bit shfl op)

Finally, set SMEM to 64-bit mode

Still pretty bad…

0

10

20

30

40

50

60

JAC NVE Factor IX NVE

C2050

M2090

GTX580

GTX680

GTX680'

Desperation ensues…

A few years back, Tetsuo Narumi wrote a cool paper
about using 6-12 single-precision ops and two
variables to approximate 48-bit double-precision:

 Narumi et al., High-Performance Quasi Double-Precision Method using Single-Precision

 Hardware for Molecular Dynamics Simulations with GPUs, HPC Asia and APAN 2009

 Proceedings

Tried it, but it fell short of the claimed precision for
me

But in the middle of evaluating this approach, I tried
out 64-bit fixed point…

Use 64-bit fixed point for accumulation

Each iteration of the nonbond kernel in PMEMD used 9
double-precision operations

Fermi double-precision was ¼ to 1/10th of single-
precision

Kepler double-precision is 1/24th single precision!

So accumulate forces in 64-bit fixed point

Fixed point forces are *perfectly* conserved

3 double-precision operations per iteration

Integer extended math is 32-bit!

Use atomic ops for 64-bit RMW

Fermi and Kepler have roughly the same GMEM
bandwidth

So the only way to improve on this is to do fire and
forget RMW (read-modify-write) operations

Also eliminates clearing and reducing of accumulation
buffers

Dramatically lower memory footprint

Still deterministic!

Use atomic ops for Ewald sum

Ewald sum previously used 8 to 27 floating-point
values per charge grid point to prevent race
conditions

Atomic ops eliminate the need for this

Slower on Fermi, 50% faster on Kepler

Also still deterministic!

Move irregular SMEM data to L1

Neighbor List construction needs a table of bonded
atom pairs called “exclusions” that are used for
ignoring their potential nonbond interactions

There was no way to fit this in SMEM and increase
thread count to account for the increased operational
latency

Unexplored: In fixed point, one does not need to
worry about how these are filtered out – they can be
post-procssed

GTX 680 SPFP Performance* (PME)

0

10

20

30

40

50

60

70

80

JAC NVE Factor IX NVE Cellulose NVE

C2050

M2090

GTX580

GTX680

GTX680'

GTX680 SPFP

*~40-50% faster than GTX 580

GTX 680 SPFP Performance (GB)

0

0.5

1

1.5

2

2.5

3

C2050 M2090 GTX580 GTX 680 SPFP

Nucleosome GB

Energy Conservation, Implicit Solvent

(kT/ns/d.o.f)

apo-myoglobin GB dt=1.0fs dt=2.0fs, SHAKE

CPU 0.000094 0.000416

DPDP 0.000117 0.000290

SPDP 0.000185 0.000139

SPFP 0.000122 0.000254

Summary: 4-6x faster over 3 years

“This isn’t science, this is engineering.” – Anonymous Competitor

0

1

2

3

4

5

6

7

C1060 (2008)

C2050 (2009)

GTX 580 (2011)

GTX680 SPFP (2012)

GK110: Expect 8-12x by the end of the year*…

*Based on 15 SMXs, a 384-bit memory bus, and Ge Force Clocks

What The Cloud Isn’t…

1. Port Application to Cloud

2. ???

3. PROFIT!!!

What AWS (Amazon Web Services) Is…

Infrastructure As a Service

All sorts of computer types (instances)

cc1.4xlarge – 2 quad-core CPUs

cc2.8xlarge – 2 octa-core CPUs

cg1.4xlarge – 2 quad-core CPUs + 2 C2050 GPUs

But Why Bother?

Port Once, Run Everywhere

(from a web page)

Avoids situations like this:

On Mon, Mar 05, 2012, Yudong Sun wrote:

>

> I have got the following error in compiling AmberTools 1.5 with Amber 11

> using gcc 4.6.1:

>

> (cd nab && make install)

> make[1]: Entering directory

> `/esfs2/z03/z03/ydsun/queries/q202726_amber11/amber11/AmberTools/src/nab'

> ./nab -c dna3.nab

 nab2c failed!

Deploy Previously Licensed Software For

Fun and Profit (without a license)

Build a single consistent image for your application

Use Identity and Access Management (IAM) to control
access

If you’re ambitious, build CLI and web tools to abstract
away any notion of the cloud

Monetize with Amazon Marketplace

Get Extra Capacity When You Need It

Lead optimization is only embarrassingly parallel if
you have the hardware to make it that way

Do you want to wait 3 months or 3 days to finish
those free energy calculations?

The easiest way to reduce sampling error is to do
more sampling

Public cloud is oversubscribed

Manage it all with StarCluster

Python application that allows one to dynamically
spawn clusters of any sort and size on EC2

Comes with Open Grid Engine preinstalled

Dynamically adjusts cluster size based on size of job
submission queue

Automagically manages GPU usage if your app
intelligently handles exclusive mode

http://serverfault.com/questions/377005/using-cuda-
visible-devices-with-sge

// Let CUDA select any device from this list of device IDs filtered by your

// own criteria (not shown)

status = cudaSetValidDevices(pGPUList, nGpus);

if (status != cudaSuccess)

{

 printf(("Error searching for compatible GPU\n");

 exit(-1);

}

// Trick driver into creating a context on an available and valid GPU

status = cudaFree(0);

if (status != cudaSuccess)

{

 printf("Error selecting compatible GPU\n");

 exit(-1);

}

// Get device selected by driver

status = cudaGetDevice(&device);

if (status != cudaSuccess)

{

 printf("Error fetching current GPU\n");

 exit(-1);

}

// Your amazing CUDA program goes here...

Which instance type is the fastest?

But don’t take my word for it…

NVIDIA and AWS are sponsoring the GPU Test Drive

http://www.nvidia.com/gputestdrive

Run PMEMD anywhere on your own data

$100 (~48 hours of cg1.4xlarge EC2 time) for free…

http://www.nvidia.com/gputestdrive
http://www.nvidia.com/gputestdrive

Two Examples

Ensemble Molecular Dynamics

100s to 1000s of independent runs with subsequent
analysis of results

We have 100s to 1000s of GPUs standing by

Get a year’s worth of molecular dynamics in a day

Store intermediate results in S3

Replica Exchange Molecular Dynamics

100s to 1000s of loosely coupled molecular dynamics
simulations periodically exchanging data

Network fabric is the rate limiter

Runs at 85-90% of peak for 100+ replicas over 50+
instances

What We’re Doing…

Everything we can to make porting these applications to
the cloud as simple as possible

Talk to us!

Summary

GPUs bring enormous gains in computational
firepower and memory bandwidth that just keep on
coming…

EC2 lets you scale when you need to and provides
brand new ways to deploy your applications…

Kepler: Learn to love it because the best is yet to
come…

Acknowledgments

AWS: Deepak Singh, Mike Marr, Matt Wood

NVIDIA: Mark Berger, Duncan Poole, Sarah Tariq

AMBER: Ross Walker, Jason Swails, David Case

And Finally…

I’d like to acknowledge my father, Donald Le Grand

4/2/1930-3/7/2012

Without whom, none of this was possible…

