
GPU Ray Tracing

May 14, 2012

S0603 - GPU Ray Tracing

Learn the latest approaches in levering GPUs for

the fastest possible ray tracing results from

experts developing and leveraging the NVIDIA

OptiX ray tracing engine, the team behind

NVIDIA iray, and those making custom

renderers. Multiple rendering techniques, GPU

programming languages, out-of-core rendering,

and optimal hardware configurations will be

covered in this cutting-edge discussion.

Topic Areas: Ray Tracing

Session Level: Beginner

Agenda

 Introduction (with Phillip Miller)

 GPU Ray Tracing Basics

 Introduction to OptiX

 Deeper Dive on OptiX (with David McAllister)

 What’s coming next in OptiX

NVIDIA Ray Tracing Options

 CUDA – language and computing platform

— The basic choice for building entirely custom solutions from scratch

 OptiX – middleware for ray tracing developers

— Good choice for developers with domain expertise building custom

solutions which prefer leaving GPU issues to NVIDIA

 mental ray & iray – a licensed rendering products

— Good choice for companies wanting a ready-to-integrate solution

which is maintained and advanced for them

Evolving Views on GPU Ray Tracing (it)

2007: The future is ray tracing – and GPU’s can’t do it

2008: NVIDIA can do it, but we can’t (NV demo)

2009: Now everyone can do it (Papers, OptiX)

2010: Many are doing it (Demos, 3K downloads)

2011: It’s becoming mainstream (Adobe, Autodesk, DS)

2012: It’s limitations are fading (Paging, CPU Fallback)

GPU Ray Tracing Examples

 FALSE: Ray Tracing Techniques are only limited by C

 FALSE: GPU computing languages run on all GPUs

 FALSE: Much better Perf/$; and Perf/Watt on Kepler

 FALSE: A single GPU is typically 4-12X a quad-core

 Possibly: OptiX speeds both ray tracing and GPU devel.

 Not Always: Out-of-Core Support with OptiX 2.5

GPU Ray Tracing Myths

1. The only technique possible on the GPU is “path tracing”

2. You can only use (expensive) Professional GPUs

3. A GPU farm is more expensive than a CPU farm

4. A GPU isn’t that much faster than a good CPU

5. GPU Ray Tracing is very difficult

6. Scenes must fit into GPU memory – and that’s finite

GPU Ray Tracing Facts

1. GPUs can accommodate any ray tracing technique a CPU can

2. Compute, and thus ray tracing, works on all GPUs

3. GPUs have superior performance (and maintenance) costs vs. CPUs

4. A single GPUs is considerably faster than multiple CPUs

5. OptiX makes both Ray Tracing and GPU development easier

6. Scenes can exceed GPU memory with OptiX 2.5 (up to system RAM)

Demo – State of the Art Interaction

 GPU Ray Tracing and Physics

Commercial GPU Ray Tracing
 iray CUDA C, C Runtime

 V-Ray RT CUDA C, Driver API and OpenCL

 Arion CUDA C, Driver API

 Octane CUDA C, Driver API

 finalRender CUDA C, C Runtime

 LuxRender (open source) OpenCL

 CentiLeo CUDA C, driver API Out of Core

 Panta Ray (Weta) CUDA C, driver API Massive Out of Core

 OptiX (2.5) CUDA C, driver API & PTX (Out of Core)

 Adobe After Effects CS6 OptiX API “ “

 Custom OptiX, Works Zebra, etc. OptiX API “ “

 mental ray 3.11 (in development) OptiX API “ “

GPU Ray Tracing Similarities – Performance

 Single GPU Ray Tracing Speed

— Usually linear to GPU cores and Core Clock – for a given GPU architecture

— Gains between GPU generations will vary per solution, but they’re BIG

 Multi-GPU Ray Tracing Speed

— Solution dependent, Common in Renderers, OptiX supports by default

— Scaling efficiency varies by solution;

slow techniques usually scale better than fast ones (e.g., AO vs. Whitted)

 Cluster Speed (multi-machine rendering)

— Solution dependent, Uncommon in Renderers, OptiX doesn’t, Iray does

GPU Ray Tracing Similarities – Hardware

 “SLI” configuration is not needed for multi-GPU usage

 Nearly all renderers are Single Precision

 ECC driver choice (error correction) – NOT Recommended

— No Accuracy Benefit; Slows Performance, Reserves ½ GB on a 3 GB board

 Windows 7 is a bit slower than Windows XP or Linux

 GPU memory size is often key

— Entire scene must usually fit within GPU memory – to work AT ALL

— Multiple GPUs can’t “pool” memory; entire scene must fit onto each

— If Out-of-Core is supported, performance degrades when paging

 Consumer GPUs not designed for “data center” usage

GPU Ray Tracing Similarities – Interaction

 GPU Computing (Ray Tracing) competes with system graphics

— GPUs are still singularly focused: Compute or Graphics – not simultaneous

— Often the single biggest design challenge for interactive app’s

 Careful Application Design is needed to achieve balanced interaction

— Gracefully stopping for user interaction and when app isn’t focused

— Controlling mouse pointers in the ray tracing app

 Or use Multi-GPU

— One GPU for graphics, additional GPUs for compute (Ray Tracing)

— Becoming mainstream with NVIDIA Maximus = Quadro + Tesla(s)

Multi-GPU Considerations for Development

 Differing GPUs can mean different Compute capabilities

— Not just between architectures (e.g., Fermi vs. Kepler) but

sometimes within an architecture (e.g., GF100 vs. GF104)

— Either insist on consistency, program to lowest denominator, or

have multiple code paths

 TCC (Tesla Compute Cluster) mode for Windows

— Compute-only mode; GPU no longer a Windows graphics device

— Not feature complete for multi-GPU memory accessing

— Parity coming in CUDA 5.0 (this summer)

Solutions Vary in their GPU Exploitation

 Speed-ups vary, but a top end Fermi GPU will typically

ray trace 6 to 15 times faster than on a quad-core CPU

 Constant CPU Compute challenge is to keep the GPU “busy”

— Gains on complex tasks often greater than for simple ones

— Particularly evident with multiple GPUs,

where data transfers impact simple tasks more

— Can mean the technique needs to be rethought

in how it’s scheduling work for the GPU

— Example OptiX 2.1: previous versions tuned for simple data loads,

now tuned for complex loads, with a 30-80% speed increase

GPU CPU

NVIDIA® OptiX™ ray tracing engine

Use your techniques, methods, and data
for your application with simple programs –

OptiX makes it fast on the GPU;
abstracting both GPU interaction and the
“heavy lifting” of ray tracing into easy-to-use APIs

A programmable ray tracing framework enabling the rapid
development of high performance ray tracing applications –
from complete renderers to discrete functions
(collision, acoustics, ballistics, radiation reflectance, signals, etc.)

OptiX - similar to OGL in “Approach”

 Small, Custom Programs

 Acceleration Structures
Build & Traversal

• Optimal GPU parallelism
and Performance

• Memory Management

• Paging

Application

Application Code & Data Structures

OptiX OpenGL
or Direct3D

GPU

i rg m ch v f g

• C-based Shaders/Functions
(minimal CUDA exp. reqd.)

NVIDIA® OptiX™ ray tracing engine

Optimal performance, from unique insights and methods
for the latest GPU capabilities –without needing to code for
new GPU architectures.

Easy to use, single ray programming model

Supports custom ray generation, material shading, object
intersection, scene traversal, ray payloads

Programmable intersection for custom surface types
(procedurals, patches, NURBS, displacement, hair, fur, etc.)

No assumptions on technique, shading language, geometry
type, or data structure

OptiX/Movies/Porsche_VWT_1024x576_neu.mov

OptiX – in Use

+3k downloads per version

Privately being used at companies doing:

• Content creation tools

• Post production

• Next-Generation Gaming

• Massive On-Line Player Games and Services

• Acoustics

• Ballistics

• Multi-Spectral Simulation

• Radiation & Magnetic Reflection

Adobe After Effects CS6 – using OptiX

New 3D compositing with ray traced production renderer

 From scratch, in 1 release cycle

 100% OptiX – no x86 code

 Includes CPU Fallback

— Via LLVM in OptiX

— Currently unique to Adobe

— Direct from PTX to X86

without the need of an

NVIDIA driver

OptiX – Rapid Evolution

 Version 1, November 2009

in use across many markets

 Version 2, August 2010

exploited Fermi architecture for 2-5X speed increase

 Version 2.1, January 2011

64-bit PTX, with +50% perf. on complex techniques, initial CPU fallback

 Version 2.5, April, 2012

Memory paging, GPU accel. Structure build

 Version 2.5.1 Soon

Kepler compatibility

 In progress, for summer 2012

Features important for interaction, plus Kepler optimization

HLBVH_Hairball_new.avi

OptiX 2.5 Out of Core Performance

 Averaged results, as paging amount is view dependent

of 4k Images Millions of Textured & Smoothed Faces

projected quad core CPU
projected quad core CPU

2.5GB
6GB 2.5GB

Quadro 6000 = 6GB on board memory

Quadro 5000 = 2.5GB on board memory

mental ray Ambient Occlusion

mental ray* pipeline accelerated w/ OptiX

 1.5sec HLBVH build + 15sec vs. 20 minutes on CPU

+3 minutes

2 CPU

<20m tri = 25– 70X quadcore

>20m tri = 10 – 20X quadcore

Model courtesy NVIDIA Creative

*no availability information announced yet for this functionality in mental ray version

NVIDIA Design Garage Demo

 Photorealistic car configuration made in 2010
for the GeForce community

 Built on SceniX with OptiX shaders

 Uses pure GPU ray tracing

— Est. 40-50X faster vs. a CPU core

— 3-4X faster on GF100 than on GT200

— Linear scaling over GPUs & CUDA Cores

 Rendering development speed
– 5 weeks
– 2 renderers, 5 shaders, tone mapping, DOF, etc.

!Preso/Design-Garage-Trailer.mov

OptiX – a bitter deeper dive

 David McAllister

OptiX Development Manager

NVIDIA

Ray Tracing Regimes

Computational Power

Interactive

Real-time

Batch

How to optimize ray tracing (or anything)

1. GPUs

2. Algorithmic improvement

3. Tune for the architecture

1. Better hardware

2. Better software

3. Better middleware

Acceleration Structures

Bounding Volume Hierarchy

• Object centric

• Spatial redundancy

• Example: AABB BVH

Spatial Partitioning

• Spatial centric

• Object redundancy

Acceleration Structures

Bounding Volume Hierarchy

• Object centric

• Spatial redundancy

Spatial Partitioning

• Spatial centric

• Object redundancy

Acceleration Structures

Bounding Volume Hierarchy

• Object centric

• Spatial redundancy

Spatial Partitioning

• Spatial centric

• Object redundancy

Acceleration Structures

Bounding Volume Hierarchy

• Object centric

• Spatial redundancy

Spatial Partitioning

• Spatial centric

• Object redundancy

Acceleration Structures

Bounding Volume Hierarchy

• Object centric

• Spatial redundancy

Spatial Partitioning

• Spatial centric

• Object redundancy

OptiX does the heavy lifting for you.

Target the specific architecture.

OptiX does the dirty work for you.

Target the next architecture.

OptiX Goals

 Make GPU ray tracing simpler

 Function in a resource limited device

 Achieve high performance

 Express most ray tracing algorithms

 Leverage CUDA compiler infrastructure

—No new shading language

Using OptiX

OptiX Functional Overview

Ray

Generation

Material

Shading
Material
Material

Shading

Material

Shading
Material
Object

Intersection

Acceleratio

n Structures

JIT

Compiler

OptiX API CUDA C shaders

from user programs

GPU Execution

via CUDA

D
R

A
M

 I
/F

H

O
S

T
 I

/F

G
ig

a
 T

h
re

a
d

D

R
A

M
 I

/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

L2

Scheduling

 © 2010 Do not redistribute without consent from NVIDIA

Life of a ray

1

2

3

Ray Generation

Intersection

1

2

3 Shading

Lambertian

Shading

Ray-Sphere

Intersection

Pinhole

Camera

Payload

float3 color

 © 2010 Do not redistribute without consent from NVIDIA

Life of a ray

1 2 3
Lambertian

Shading

Ray-Sphere

Intersection

Pinhole

Camera
RT_PROGRAM void pinhole_camera()

{

 float2 d = make_float2(launch_index) / make_float2(launch_dim) * 2.f - 1.f;

 float3 ray_origin = eye;

 float3 ray_direction = normalize(d.x*U + d.y*V + W);

 optix::Ray ray = optix::make_Ray(ray_origin, ray_direction,

 radiance_ray_type, scene_epsilon, RT_DEFAULT_MAX);

 PerRayData_radiance prd;

 rtTrace(top_object, ray, prd);

 output_buffer[launch_index] = make_color(prd.result);

}

RT_PROGRAM void closest_hit_radiance3()

{

 float3 world_geo_normal = normalize(rtTransformNormal(RT_OBJECT_TO_WORLD, geometric_normal));

 float3 world_shade_normal = normalize(rtTransformNormal(RT_OBJECT_TO_WORLD, shading_normal));

 float3 ffnormal = faceforward(world_shade_normal, -ray.direction, world_geo_normal);

 float3 color = Ka * ambient_light_color;

 float3 hit_point = ray.origin + t_hit * ray.direction;

 for(int i = 0; i < lights.size(); ++i) {

 BasicLight light = lights[i];

 float3 L = normalize(light.pos - hit_point);

 float nDl = dot(ffnormal, L);

 if(nDl > 0.0f){

 // cast shadow ray

 PerRayData_shadow shadow_prd;

 shadow_prd.attenuation = make_float3(1.0f);

 float Ldist = length(light.pos - hit_point);

 optix::Ray shadow_ray(hit_point, L, shadow_ray_type, scene_epsilon, Ldist);

 rtTrace(top_shadower, shadow_ray, shadow_prd);

 float3 light_attenuation = shadow_prd.attenuation;

 if(fmaxf(light_attenuation) > 0.0f){

 float3 Lc = light.color * light_attenuation;

 color += Kd * nDl * Lc;

 float3 H = normalize(L - ray.direction);

 float nDh = dot(ffnormal, H);

 if(nDh > 0)

 color += Ks * Lc * pow(nDh, phong_exp);

 }

 }

 }

 prd_radiance.result = color;

}

RT_PROGRAM void intersect_sphere()

{

 float3 O = ray.origin - center;

 float3 D = ray.direction;

 float b = dot(O, D);

 float c = dot(O, O)-radius*radius;

 float disc = b*b-c;

 if(disc > 0.0f){

 float sdisc = sqrtf(disc);

 float root1 = (-b - sdisc);

 bool check_second = true;

 if(rtPotentialIntersection(root1)) {

 shading_normal = geometric_normal = (O + root1*D)/radius;

 if(rtReportIntersection(0))

 check_second = false;

 }

 if(check_second) {

 float root2 = (-b + sdisc);

 if(rtPotentialIntersection(root2)) {

 shading_normal = geometric_normal = (O + root2*D)/radius;

 rtReportIntersection(0);

 }

 }

 }

 © 2010 Do not redistribute without consent from NVIDIA

Program objects (shaders)

• Input “language” is based on CUDA C/C++
• No new language to learn

• Powerful language features available immediately

• Can also take raw PTX as input

• Data associated with ray is programmable

• Caveat: still need to use it responsibly to get

performance

RT_PROGRAM void pinhole_camera()

{

 float2 d = make_float2(launch_index) /

 make_float2(launch_dim) * 2.f - 1.f;

 float3 ray_origin = eye;

 float3 ray_direction = normalize(d.x*U + d.y*V + W);

 optix::Ray ray = optix::make_Ray(ray_origin,

ray_direction,

 radiance_ray_type, scene_epsilon, RT_DEFAULT_MAX);

 PerRayData_radiance prd;

 rtTrace(top_object, ray, prd);

 output_buffer[launch_index] = make_color(prd.result);

}

Closest hit program (traditional “shader”)

 Defines what happens when a ray hits an object

 Executed for nearest intersection (closest hit) along a ray

 Automatically performs deferred shading

 Can recursively shoot more rays

— Shadows

— Reflections

— Ambient occlusion

— Path tracing

 Most common

Lambertian shader

Adding shadows

Any hit program

 Defines what happens when a ray attempts to hit an

object

 Executed for all intersections along a ray

 Can optionally:

— Stop the ray immediately (shadow rays)

— Ignore the intersection and allow ray to continue (alpha

transparency)

Adding reflections

Environment map

Miss program

Defines what happens when a ray misses all objects

Accesses ray payload

Usually – background color

Schlick approximation

Tiled floor

Rusty metal

Adding primitives

Intersection program

 Determines if/where ray hits an object

 Sets attributes (normal, texture coordinates)

— Used by closest hit shader for shading

 Selects which material to use

 Used for

— Programmable surfaces

— Allowing arbitrary triangle buffer formats

— Etc.

Environment map camera

Ray generation program

 Starts the ray tracing process

 Used for:

— Camera model

— Output buffer writes

 Can trace multiple rays

 Or no rays

OptiX – What’s Next?

Acceleration Structures++

 “Sbvh” is up to 8X faster

 “Lbvh” is extremely fast and works on very large datasets

 BVH Refinement optimizes the quality of a BVH

— Smoother scene editing

— Smoother animation

Slow Build

Fast Render

Fast Build

Slow Render

Sbvh Bvh MedianBvh Lbvh

BVH Refinement

0

20

40

60

80

100

120

1 4 7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9
5

2
5

5
5

8
6

1
6

4
6

7
7

0
7

3
7

6
7

9
8

2
8

5

S
A

H
 c

o
s
t

frame

SAH Cost of Fracturing
Columns

hlbvh
only

CUDA-OptiX Interoperability

 Share a CUDA context between OptiX and CUDA runtime

 Share buffers on one device without memory copies

 Copy buffers from device to device peer-to-peer

— Avoid round-trip through host

Shade Tree Support

 User Functions

 Bindless Texture

Paging

 Use cases:

— Mildly oversubscribed:

 (513MB dataset, 512MB card)

— Largely oversubscribed:

 (20GB dataset, 6GB card)

 Approach: Use OptiX Compiler to implement virtual memory

system in OptiX kernel

Software Texture

 Texture hardware is massive speedup

 Compiler pass replaces TEX instructions

 Sometimes a speedup (float1, NEAREST)

 Usually a slowdown

 Choose which textures to fall back to SW

 Best 127 textures stay in HW

Thanks for Attending! OptiX SDK

 Free to acquire and use: Windows, Linux, Mac

 http://developer.nvidia.com

http://developer.nvidia.com/

