
Multi-GPU Programming 

Paulius Micikevicius 

Developer Technology, NVIDIA 

© 2012, NVIDIA 1 



Outline 

• Usecases and a taxonomy of scenarios 
• Inter-GPU communication: 

– Single host, multiple GPUs 
– Multiple hosts 

• Case study 
• Multiple GPUs, streams, and events 
• Additional APIs:  

– GPU-aware MPI, cudaIpc* 

• NUMA effect on GPU-CPU communication 
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• Why multi-GPU? 
– To further speedup computation 
– Working set exceeds a single GPU’s memory 
– Having multiple GPUs per node improves perf/W 

• Amortize the CPU server power among more GPUs 
• Same goes for the cost 

• Inter-GPU communication may be needed 
– Two general cases: 

• GPUs within a single network node 
• GPUs across network nodes 
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Taxonomy of Inter-GPU Communication Cases 

Network nodes 

Single Multiple 

Single process 
Single-threaded N/A 

Multi-threaded N/A 

Multiple processes 
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GPUs can communicate via P2P or shared host memory 

GPUs communicate via host-side message passing 



Minimal Review of Streams and Async API 
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Overlap kernel and memory copy 

• Requirements: 
– D2H or H2D memcopy from pinned memory 
– Device with compute capability ≥ 1.1 (G84 and later) 
– Kernel and memcopy in different, non-0 streams 

• Code: 
cudaStream_t   stream1, stream2; 
cudaStreamCreate(&stream1); 
cudaStreamCreate(&stream2); 
 

cudaMemcpyAsync( dst, src, size, dir, stream1 ); 
kernel<<<grid, block, 0, stream2>>>(…); 
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potentially 
overlapped 



Streams and Async API 

• Default CUDA API: 
– Kernel launches are asynchronous with CPU 
– Memcopies (D2H, H2D) block CPU thread until transfer completes 
– CUDA calls are serialized by the driver 

• Streams and async functions provide: 
– Memcopies (D2H, H2D) asynchronous with CPU and GPU 
– Ability to concurrently execute a kernel, memcopies, and CPU code 

• Stream: sequence of operations that execute in issue-order on GPU 
– Operations from different streams may be interleaved 
– A kernel and memcopy from different streams can be overlapped 
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Communication for Single Host, Multiple GPUs 
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Managing multiple GPUs from a single CPU thread 

• CUDA calls are issued to the current GPU 
– Exception: peer-to-peer memcopies 

 

• cudaSetDevice() sets the current GPU 
 

• Current GPU can be changed while async calls (kernels, 
memcopies) are running 
– The following code will have both GPUs executing concurrently: 
 

cudaSetDevice( 0 ); 
kernel<<<...>>>(...); 
cudaMemcpyAsync(...); 
cudaSetDevice( 1 ); 
kernel<<<...>>>(...); 
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Unified Addressing (CUDA 4.0 and later) 

• CPU and GPU allocations use unified virtual address space 
– Think of each one (CPU, GPU) getting its own range of a single VA space 

• Driver/GPU can determine from an address where data resides 
• An allocation resides on a single device (an array doesn’t span several GPUs) 

– Requires:  
• 64-bit Linux or 64-bit Windows with TCC driver 
• Fermi or later architecture GPUs (compute capability 2.0 or higher) 
• CUDA 4.0 or later 

• A GPU can dereference a pointer that is: 
– an address on another GPU 
– an address on the host (CPU) 
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UVA and Multi-GPU Programming 

• Two interesting aspects: 
– Peer-to-peer (P2P) memcopies 
– Accessing another GPU’s addresses 
 

• Both require peer-access to be enabled: 
– cudaDeviceEnablePeerAccess( peer_device, 0 ) 

• Enables current GPU to access addresses on peer_device GPU 

– cudaDeviceCanAccessPeer( &accessible, dev_X, dev_Y ) 
• Checks whether dev_X can access memory of dev_Y 
• Returns 0/1 via the first argument 
• Peer-access is not available if: 

– One of the GPUs is pre-Fermi 
– GPUs are connected to different IOH chips on the motherboard 

» QPI and PCIe protocols disagree on P2P 
11 
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Peer-to-peer memcopy 

• cudaMemcpyPeerAsync( void* dst_addr, int dst_dev,  

  void* src_addr, int src_dev,  

  size_t num_bytes, cudaStream_t stream ) 
– Copies the bytes between two devices 
– Currently data is “pushed”: source GPU’s DMA engine carries out the copy 
– There is also a blocking (as opposed to Async) version 

• If peer-access is enabled: 
– Bytes are transferred along the shortest PCIe path 
– No staging through CPU memory 

• If peer-access is not available 
– CUDA driver stages the transfer via CPU memory 
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How Does P2P Memcopy Help Multi-GPU? 

• Ease of programming 
– No need to manually maintain memory buffers on the host for 

inter-GPU exchanges 

• Increased throughput 
– Especially when communication path does not include IOH (GPUs 

connected to a PCIe switch): 
• Single-directional transfers achieve up to ~6.6 GB/s  (~12 GB/s for gen3) 

• Duplex transfers achieve ~12.2 GB/s  (~22 GB/s for gen3) 
– ~5 GB/s if going through the host 

– GPU-pairs can communicate concurrently if paths don’t overlap 
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Example: 1D Domain Decomposition and P2P 

• Each subdomain has at most two neighbors 
– “left”/”right” 
– Communication graph = path 

• GPUs are physically arranged into a tree(s) 
– GPUs can be connected to a PCIe switch 
– PCIe switches can be connected to another switch 

• A path can be efficiently mapped onto a tree 
– Multiple exchanges can happen without contending for the same PCIe 

links 
– Aggregate exchange throughput: 

• Approaches (PCIe bandwdith) * (number of GPU pairs) 
• Typical achieved PCIe gen2 simplex bandwidth on a single link: 6 GB/s 
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Example: 4-GPU Topology 

• Two ways to implement 1D exchange 
– Left-right approach 

– Pairwise approach 

– Both require two stages 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

PCIe switch 

to host system 

15 © 2012, NVIDIA 



Example: Left-Right Approach for 4 GPUs 

• The 3 transfers in a stage happen concurrently 
– Achieved throughput: ~15 GB/s (4-MB messages) 

• No contention for PCIe links 
– PCIe links are duplex 
– Note that no link has 2 communications in the same “direction” 

GPU-3 GPU-2 

PCIe switch 

GPU-1 GPU-0 

PCIe switch 

PCIe switch 

Stage 2: send “left” / receive from “right” 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

PCIe switch 

Stage 1: send “right” / receive from “left” 
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• Stage 1 shown above (Stage 2 is basically the same) 

• Achieved aggregate throughput: ~34 GB/s 

IOH 

Westmere Westmere 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

GPU-4 GPU-5 

PCIe switch 

GPU-6 GPU-7 

PCIe switch 

PCIe switch PCIe switch 

Example: Left-Right Approach for 8 GPUs 
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Example: Pairwise Approach for 4 GPUs 

• No contention for PCIe links 
– All transfers are duplex, PCIe links are duplex 
– Note that no link has more than 1 exchange 

• Not true for 8 or more GPUs 

GPU-3 GPU-2 

PCIe switch 

GPU-1 GPU-0 

PCIe switch 

PCIe switch 

Stage 2: odd-even pairs 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

PCIe switch 

Stage 1: even-odd pairs 
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IOH 

Westmere Westmere 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

GPU-4 GPU-5 

PCIe switch 

GPU-6 GPU-7 

PCIe switch 

PCIe switch PCIe switch 

• Odd-even stage: 
– Will always have contention for 8 or more GPUs 

• Even-odd stage: 
– Will not have contention 

Contention for the link: 
  2 duplex communications 

Example: Even-Odd Stage of Pairwise Approach for 8 GPUs 
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1D Communication 

• Pairwise approach slightly better for 2-GPU case 

• Left-Right approach better for the other cases 

20 
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Code for the Left-Right Approach 

 

• Code assumes that addresses and GPU IDs are stored in arrays 
• The middle loop isn’t necessary for correctness 

– Improves performance by preventing the two stages from interfering 
with each other (15 vs 11 GB/s for the 4-GPU example) 

for( int i=0; i<num_gpus-1; i++ ) // “right” stage 
 cudaMemcpyPeerAsync( d_a[i+1], gpu[i+1], d_a[i], gpu[i], num_bytes, stream[i] ); 
 

for( int i=0; i<num_gpus; i++ ) 
  cudaStreamSynchronize( stream[i] ); 
 

for( int i=1; i<num_gpus; i++ ) // “left” stage 
 cudaMemcpyPeerAsync( d_b[i-1], gpu[i-1], d_b[i], gpu[i], num_bytes, stream[i] ); 

21 © 2012, NVIDIA 



Possible Pattern for Multi-GPU Code 

• Stage 1: 

– Compute halos (data to be shared with other GPUs) 

• Stage 2: 

– Exchange data with other GPUs 

• Use asynchronous copies 

– Compute over internal data 

• Synchronize 
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• These can overlap 
when issued to 
different streams 

 

• Scaling is linear if 
compute is longer 
than exchange 



Example: Two Subdomains 
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Example: Two Subdomains 
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send compute send compute 

compute compute 

Phase 1 

Phase 2 

GPU-0: green subdomain 
GPU-1: grey subdomain 



Code Pattern 
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for( int istep=0; istep<nsteps; istep++) 
{ 
 for( int i=0; i<num_gpus; i++ ) 
 { 
  cudaSetDevice( gpu[i] ); 
  kernel<<<..., stream_halo[i]>>>( ... ); 
  kernel<<<..., stream_halo[i]>>>( ... ); 
  cudaStreamQuery( stream_halo[i] ); 
  kernel<<<..., stream_internal[i]>>>( ... ); 
 } 
 

 for( int i=0; i<num_gpus-1; i++ ) 
  cudaMemcpyPeerAsync( ..., stream_halo[i] ); 
 for( int i=0; i<num_gpus; i++ ) 
  cudaStreamSynchronize( stream_halo[i] ); 
 for( int i=1; i<num_gpus; i++ ) 
  cudaMemcpyPeerAsync( ..., stream_halo[i] ); 
 

 for( int i=0; i<num_gpus; i++ ) 
 { 
  cudaSetDevice( gpu[i] ); 
  cudaDeviceSynchronize(); 
  // swap input/output pointers 
 } 
} 

Compute halos 

Exchange halos 

Synchronize before next step 

Compute internal data 



Communication for Multiple Host, Multiple GPUs 
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Communication Between GPUs in Different Nodes 

• Requires network communication 
– Currently requires data to first be transferred to host 

• Steps for an exchange: 
– GPU->CPU transfer 
– CPU exchanges via network 

• For example, MPI_Sendrecv 
• Just like you would do for non-GPU code 

– CPU->GPU transfer 

• If each node also has multiple GPUs: 
– Can continue using P2P within the node, netw outside the node 
– Can overlap some PCIe transfers with network communication 

• In addition to kernel execution 
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© 2012, NVIDIA 



Code Pattern 

28 

 
 cudaMemcpyAsync( ..., stream_halo[i] ); 
 cudaStreamSynchronize( stream_halo[i] ); 
 MPI_Sendrecv( ... ); 
 cudaMemcpyAsync( ..., stream_halo[i] ); 
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Overlapping MPI and PCIe Transfers 
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    for( int i=0; i<num_gpus-1; i++ ) 
  cudaMemcpyPeerAsync( ..., stream_halo[i] ); 
     cudaSetDevice( gpu[num_gpus-1] ); 
     cudaMemcpyAsync( ..., stream_halo[num_gpus-1] ); 
 

    for( int i=0; i<num_gpus; i++ ) 
  cudaStreamSynchronize( stream_halo[i] ); 
 

    for( int i=1; i<num_gpus; i++ ) 
  cudaMemcpyPeerAsync( ..., stream_halo[i] ); 
     cudaSetDevice( gpu[0] ); 
     cudaMemcpyAsync( ..., stream_halo[0] ); 
     MPI_Sendrecv( ... ); 
 

     for( int i=0; i<num_gpus; i++ ) 
  cudaStreamSynchronize( stream_halo[i] ); 
 

     cudaSetDevice( gpu[0] ); 
     cudaMemcpyAsync( ..., stream_halo[0] ); 
     MPI_Sendrecv( ... ); 
  

     cudaSetDevice( gpu[num_gpus-1] ); 
     cudaMemcpyAsync( ..., stream_halo[num_gpus-1] ); 



Case Study 

30 
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Case Study: TTI FWM 

• TTI Forward Wave Modeling 
– Fundamental part of TTI RTM 
– 3DFD, 8th order in space, 2nd order in time 
– Regular grid 
– 1D domain decomposition 

• Data set: 
– 512x512x512 cube 
– Requires ~7 GB working set 

• Experiments: 
– Throughput increase over 1 GPU 
– Single node, 4-GPU “tree” 
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Case Study: Time Breakdown 

• Single step (single 8-GPU node): 
– Halo computation: 1.1 ms 
– Internal computation: 12.7 ms 
– Halo-exchange: 5.9 ms 
– Total: 13.8 ms 

 

• Communication is completely hidden 
– 12.7 ms for internal computation, 5.9 ms for communication 

• ~95% scaling: halo+internal: 13.8 ms (13.0 ms if done without 
splitting computation into halo and internal) 

– Thus, plenty of time for slower communication (network) 

 
32 
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Case Study: Multiple Nodes 

• Test system:  
– 3 servers, each with 2 M2090 GPUs, Infiniband DDR interconnect 

• Performance: 
– 512x512x512 domain: 

• 1 node x 2 GPUs: 1.98x 
• 2 nodes x 1 GPU: 1.97x 
• 2 nodes x 2 GPUs: 3.98x 
• 3 nodes x 2 GPUs: 4.50x 

– 768x768x768 domain: 
• 3 nodes x 2 GPUs: 5.60x 

•  Test system: 
– Communication (PCIe and IB DDR2) is hidden when each GPU gets ~100 slices 

• Network is ~68% of all communication time 

– IB QDR hides communication when each GPU gets ~70 slices 
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Communication takes longer than  
internal computation 



Multi-GPU, Streams, and Events 
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Multi-GPU, Streams, and Events 

• CUDA streams and events are per device (GPU) 
– Determined by the GPU that’s current at the time of their creation 
– Each device has its own default stream (aka 0- or NULL-stream) 

• Streams and: 
– Kernels: can be launched to a stream only if the stream’s GPU is current 
– Memcopies: can be issued to any stream  

• even if the stream doesn’t belong to the current GPU 
• Driver will ensure that all calls to that stream complete before bytes are transferred 

– Events: can be recorded only to a stream if the stream’s GPU is current 

• Synchronization/query: 
– It is OK to query or synchronize with any event/stream 

• Even if stream/event does not belong to the current GPU 
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Example 1 
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cudaStream_t streamA, streamB; 
cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 
cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 
cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 
cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 
cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  
cudaEventRecord( eventB, streamB ); 
 

cudaEventSynchronize( eventB ); 

OK:  
• device 1 is current 
• eventB and streamB belong to device 1 
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Example 2 
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cudaStream_t streamA, streamB; 
cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 
cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 
cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 
cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 
cudaEventCreate( &eventB ); 
 

kernel<<<..., streamA>>>(...);  
cudaEventRecord( eventB, streamB ); 
 

cudaEventSynchronize( eventB ); 

ERROR:  
• device 1 is current 
• streamA belongs to device 0 

© 2012, NVIDIA 



Example 3 
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cudaStream_t streamA, streamB; 
cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 
cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 
cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 
cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 
cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  
cudaEventRecord( eventA, streamB ); 
 

ERROR:  
• eventA belongs to device 0 
• streamB belongs to device 1 
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Example 4 
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cudaStream_t streamA, streamB; 
cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 
cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 
cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 
cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 
cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  
cudaEventRecord( eventB, streamB ); 
 

cudaSetDevice( 0 ); 
cudaEventSynchronize( eventB ); 
kernel<<<..., streamA>>>(...); 

device-1 is current 

device-0 is current 
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Example 4 
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cudaStream_t streamA, streamB; 
cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 
cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 
cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 
cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 
cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  
cudaEventRecord( eventB, streamB ); 
 

cudaSetDevice( 0 ); 
cudaEventSynchronize( eventB ); 
kernel<<<..., streamA>>>(...); 

OK:  
• device-0 is current 
• synchronizing/querying events/streams of other 
devices is allowed 
• here, device-0 won’t start executing the kernel until 
device-1 finishes its kernel 
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Example 4 
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cudaStream_t streamA, streamB; 
cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 
cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 
cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 
cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 
cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  
cudaEventRecord( eventB, streamB ); 
 

cudaSetDevice( 0 ); 
cudaEventSynchronize( eventB ); 
kernel<<<..., streamA>>>(...); 

OK:  
• device-0 is current 
• synchronizing/querying events/streams of other 
devices is allowed 
• here, device 0 won’t start executing the kernel until 
device 1 finishes its kernel 
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Example 5 
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int gpu_A = 0; 
int gpu_B = 1; 
 
cudaSetDevice( gpu_A ); 
cudaMalloc( &d_A, num_bytes ); 
 

int accessible = 0; 
cudaDeviceCanAccessPeer( &accessible, gpu_B, gpu_A ); 
if( accessible ) 
{ 
 cudaSetDevice(gpu_B ); 
 cudaDeviceEnablePeerAccess( gpu_A, 0 ); 
 kernel<<<...>>>( d_A); 
} 

Even though kernel executes on gpu2, it 
will access (via PCIe) memory allocated 
on gpu1 
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Additional APIs Useful for Multi-GPU 
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cudaIpc* API 

• Processes on the same host can access each others’ GPU memory 
– Example use:  bypass communication via host with MPI, use P2P 

• MPI ranks on the same node transfer directly to each other’s GPU  
• As opposed to with MPI copy first, then copying to GPU 

• Approach: 
– Process A gets a handle to its pointer, sends it to process B 
– Process B opens the handle: gets a pointer to A’s address 
– Process B (or its GPU kernels) uses the pointer 
– Process B closes the handle 
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Process A: 
cudaIpcMemHandle_t   handle_a; 
cudaIpcGetMemHandle( &handle_a, (void*)d_a ); 
 

Process B: 
cudaIpcOpenMemHandle( (void**)&d_neighbor,   neighbors_a,   cudaIpcMemLazyEnablePeerAccess ); 
         // use d_neighbor like you would a locally allocated pointer 
cudaIpcCloseMemHandle( d_neighbor ); 



GPU-Aware MPI 

• MPI calls can take GPU pointers 
– mvapich, openmpi 
– Works with C/C++, Fortran, CUDA C, CUDA Fortran, directives-based code 

• Benefits: 
– Simplifies code (no need to explicitly copy GPU<->CPU) 
– Can pipeline transfers for better performance: 

• Break the transfer into smaller pieces 
• Pipeline the transfer of pieces: overlap PCIe and Netw for all but the first and last 

piece 

• Not yet available: 
– P2P path when MPI ranks are on the same node 
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Host (CPU) NUMA and CPU/GPU Transfers 
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Additional System Issues to Consider 

• CPU NUMA affects PCIe transfer throughput in dual-IOH systems 
– Transfers to “remote” GPUs achieve lower throughput 

• One additional QPI hop 

– This affects any PCIe device, not just GPUs 
• Network cards, for example 

– When possible, lock CPU threads to a socket that’s “closest” to the GPU 
• For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc. 

• Dual-IOH systems prevent PCIe P2P across the IOH chips 
– QPI link between the IOH chips isn’t compatible with PCIe P2P 
– P2P copies will still work, but will get staged via host memory 
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“Local” D2H Copy: 6.3 GB/s 
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IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 
 

GPU-0 
 

GPU-1 
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“Remote” D2H Copy: 4.3 GB/s 

49 

IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 
 

GPU-0 
 

GPU-1 
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Summary of CPU-GPU Copy Throughputs on One System 
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IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 
 

GPU-0 
 

GPU-1 

• Note that these vary 
among different systems 
– Different BIOS settings 
– Different IOH chips 

• Local: 
– D2H: 6.3 GB/s 
– H2D: 5.7 GB/s 

• Remote: 
– D2H: 4.3 GB/s 
– H2D: 4.9 GB/s 
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Summary of P2P Throughputs, PCIe gen2 
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IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 

 

GPU-0 
 

GPU-1 PCIe switch 

• Via PCIe switch: 
– GPUs attached to the same PCIe switch 
– Simplex: 6.3 GB/s  (12 GB/s gen3) 
– Duplex: 12.2 GB/s  (22 GB/s gen3) 

• Via IOH chip: 
– GPUs attached to the same IOH chip 
– Simplex: 5.3 GB/s 
– Duplex: 9.0 GB/s 

• Via host: 
– GPUs attached to different IOH chips 
– Simplex: 2.2 GB/s 
– Duplex: 3.9 GB/s 



Determining Topology/Locality of a System 

• Hardware Locality tool: 

– http://www.open-mpi.org/projects/hwloc/ 

– Cross-OS, cross-platform 
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Summary 

• CUDA provides a number of features to facilitate multi-GPU programming 
• Single-process / multiple GPUs: 

– Unified virtual address space 
– Ability to directly access peer GPU’s data 
– Ability to issue P2P memcopies 

• No staging via CPU memory 
• High aggregate throughput for many-GPU nodes 

• Multiple-processes: 
– GPU Direct to maximize performance when both PCIe and IB transfers are 

needed 

• Streams and asynchronous kernel/copies 
– Allow overlapping of communication and execution 
– Applies whether using single- or multiple threads to control GPUs 

• Keep NUMA in mind on multi-IOH systems 
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Questions? 
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