
Multi-GPU Programming

Paulius Micikevicius

Developer Technology, NVIDIA

© 2012, NVIDIA 1

Outline

• Usecases and a taxonomy of scenarios
• Inter-GPU communication:

– Single host, multiple GPUs
– Multiple hosts

• Case study
• Multiple GPUs, streams, and events
• Additional APIs:

– GPU-aware MPI, cudaIpc*

• NUMA effect on GPU-CPU communication

© 2012, NVIDIA 2

• Why multi-GPU?
– To further speedup computation
– Working set exceeds a single GPU’s memory
– Having multiple GPUs per node improves perf/W

• Amortize the CPU server power among more GPUs
• Same goes for the cost

• Inter-GPU communication may be needed
– Two general cases:

• GPUs within a single network node
• GPUs across network nodes

© 2012, NVIDIA 3

Taxonomy of Inter-GPU Communication Cases

Network nodes

Single Multiple

Single process
Single-threaded N/A

Multi-threaded N/A

Multiple processes

© 2012, NVIDIA 4

GPUs can communicate via P2P or shared host memory

GPUs communicate via host-side message passing

Minimal Review of Streams and Async API

5
© 2012, NVIDIA

Overlap kernel and memory copy

• Requirements:
– D2H or H2D memcopy from pinned memory
– Device with compute capability ≥ 1.1 (G84 and later)
– Kernel and memcopy in different, non-0 streams

• Code:
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(…);

© 2012, NVIDIA 6

potentially
overlapped

Streams and Async API

• Default CUDA API:
– Kernel launches are asynchronous with CPU
– Memcopies (D2H, H2D) block CPU thread until transfer completes
– CUDA calls are serialized by the driver

• Streams and async functions provide:
– Memcopies (D2H, H2D) asynchronous with CPU and GPU
– Ability to concurrently execute a kernel, memcopies, and CPU code

• Stream: sequence of operations that execute in issue-order on GPU
– Operations from different streams may be interleaved
– A kernel and memcopy from different streams can be overlapped

7 © 2012, NVIDIA

Communication for Single Host, Multiple GPUs

8
© 2012, NVIDIA

Managing multiple GPUs from a single CPU thread

• CUDA calls are issued to the current GPU
– Exception: peer-to-peer memcopies

• cudaSetDevice() sets the current GPU

• Current GPU can be changed while async calls (kernels,
memcopies) are running
– The following code will have both GPUs executing concurrently:

cudaSetDevice(0);
kernel<<<...>>>(...);
cudaMemcpyAsync(...);
cudaSetDevice(1);
kernel<<<...>>>(...);

© 2012, NVIDIA 9

Unified Addressing (CUDA 4.0 and later)

• CPU and GPU allocations use unified virtual address space
– Think of each one (CPU, GPU) getting its own range of a single VA space

• Driver/GPU can determine from an address where data resides
• An allocation resides on a single device (an array doesn’t span several GPUs)

– Requires:
• 64-bit Linux or 64-bit Windows with TCC driver
• Fermi or later architecture GPUs (compute capability 2.0 or higher)
• CUDA 4.0 or later

• A GPU can dereference a pointer that is:
– an address on another GPU
– an address on the host (CPU)

© 2012, NVIDIA 10

UVA and Multi-GPU Programming

• Two interesting aspects:
– Peer-to-peer (P2P) memcopies
– Accessing another GPU’s addresses

• Both require peer-access to be enabled:
– cudaDeviceEnablePeerAccess(peer_device, 0)

• Enables current GPU to access addresses on peer_device GPU

– cudaDeviceCanAccessPeer(&accessible, dev_X, dev_Y)
• Checks whether dev_X can access memory of dev_Y
• Returns 0/1 via the first argument
• Peer-access is not available if:

– One of the GPUs is pre-Fermi
– GPUs are connected to different IOH chips on the motherboard

» QPI and PCIe protocols disagree on P2P
11

© 2012, NVIDIA

Peer-to-peer memcopy

• cudaMemcpyPeerAsync(void* dst_addr, int dst_dev,

 void* src_addr, int src_dev,

 size_t num_bytes, cudaStream_t stream)
– Copies the bytes between two devices
– Currently data is “pushed”: source GPU’s DMA engine carries out the copy
– There is also a blocking (as opposed to Async) version

• If peer-access is enabled:
– Bytes are transferred along the shortest PCIe path
– No staging through CPU memory

• If peer-access is not available
– CUDA driver stages the transfer via CPU memory

© 2012, NVIDIA 12

How Does P2P Memcopy Help Multi-GPU?

• Ease of programming
– No need to manually maintain memory buffers on the host for

inter-GPU exchanges

• Increased throughput
– Especially when communication path does not include IOH (GPUs

connected to a PCIe switch):
• Single-directional transfers achieve up to ~6.6 GB/s (~12 GB/s for gen3)

• Duplex transfers achieve ~12.2 GB/s (~22 GB/s for gen3)
– ~5 GB/s if going through the host

– GPU-pairs can communicate concurrently if paths don’t overlap

© 2012, NVIDIA 13

Example: 1D Domain Decomposition and P2P

• Each subdomain has at most two neighbors
– “left”/”right”
– Communication graph = path

• GPUs are physically arranged into a tree(s)
– GPUs can be connected to a PCIe switch
– PCIe switches can be connected to another switch

• A path can be efficiently mapped onto a tree
– Multiple exchanges can happen without contending for the same PCIe

links
– Aggregate exchange throughput:

• Approaches (PCIe bandwdith) * (number of GPU pairs)
• Typical achieved PCIe gen2 simplex bandwidth on a single link: 6 GB/s

© 2012, NVIDIA 14

Example: 4-GPU Topology

• Two ways to implement 1D exchange
– Left-right approach

– Pairwise approach

– Both require two stages

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

PCIe switch

to host system

15 © 2012, NVIDIA

Example: Left-Right Approach for 4 GPUs

• The 3 transfers in a stage happen concurrently
– Achieved throughput: ~15 GB/s (4-MB messages)

• No contention for PCIe links
– PCIe links are duplex
– Note that no link has 2 communications in the same “direction”

GPU-3 GPU-2

PCIe switch

GPU-1 GPU-0

PCIe switch

PCIe switch

Stage 2: send “left” / receive from “right”

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

PCIe switch

Stage 1: send “right” / receive from “left”

16 © 2012, NVIDIA

• Stage 1 shown above (Stage 2 is basically the same)

• Achieved aggregate throughput: ~34 GB/s

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

Example: Left-Right Approach for 8 GPUs

17 © 2012, NVIDIA

Example: Pairwise Approach for 4 GPUs

• No contention for PCIe links
– All transfers are duplex, PCIe links are duplex
– Note that no link has more than 1 exchange

• Not true for 8 or more GPUs

GPU-3 GPU-2

PCIe switch

GPU-1 GPU-0

PCIe switch

PCIe switch

Stage 2: odd-even pairs

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

PCIe switch

Stage 1: even-odd pairs

18 © 2012, NVIDIA

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

• Odd-even stage:
– Will always have contention for 8 or more GPUs

• Even-odd stage:
– Will not have contention

Contention for the link:
 2 duplex communications

Example: Even-Odd Stage of Pairwise Approach for 8 GPUs

19 © 2012, NVIDIA

1D Communication

• Pairwise approach slightly better for 2-GPU case

• Left-Right approach better for the other cases

20
© 2012, NVIDIA

Code for the Left-Right Approach

• Code assumes that addresses and GPU IDs are stored in arrays
• The middle loop isn’t necessary for correctness

– Improves performance by preventing the two stages from interfering
with each other (15 vs 11 GB/s for the 4-GPU example)

for(int i=0; i<num_gpus-1; i++) // “right” stage
 cudaMemcpyPeerAsync(d_a[i+1], gpu[i+1], d_a[i], gpu[i], num_bytes, stream[i]);

for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream[i]);

for(int i=1; i<num_gpus; i++) // “left” stage
 cudaMemcpyPeerAsync(d_b[i-1], gpu[i-1], d_b[i], gpu[i], num_bytes, stream[i]);

21 © 2012, NVIDIA

Possible Pattern for Multi-GPU Code

• Stage 1:

– Compute halos (data to be shared with other GPUs)

• Stage 2:

– Exchange data with other GPUs

• Use asynchronous copies

– Compute over internal data

• Synchronize

© 2012, NVIDIA 22

• These can overlap
when issued to
different streams

• Scaling is linear if
compute is longer
than exchange

Example: Two Subdomains

© 2012, NVIDIA 23

Example: Two Subdomains

© 2012, NVIDIA 24

send compute send compute

compute compute

Phase 1

Phase 2

GPU-0: green subdomain
GPU-1: grey subdomain

Code Pattern

© 2012, NVIDIA 25

for(int istep=0; istep<nsteps; istep++)
{
 for(int i=0; i<num_gpus; i++)
 {
 cudaSetDevice(gpu[i]);
 kernel<<<..., stream_halo[i]>>>(...);
 kernel<<<..., stream_halo[i]>>>(...);
 cudaStreamQuery(stream_halo[i]);
 kernel<<<..., stream_internal[i]>>>(...);
 }

 for(int i=0; i<num_gpus-1; i++)
 cudaMemcpyPeerAsync(..., stream_halo[i]);
 for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream_halo[i]);
 for(int i=1; i<num_gpus; i++)
 cudaMemcpyPeerAsync(..., stream_halo[i]);

 for(int i=0; i<num_gpus; i++)
 {
 cudaSetDevice(gpu[i]);
 cudaDeviceSynchronize();
 // swap input/output pointers
 }
}

Compute halos

Exchange halos

Synchronize before next step

Compute internal data

Communication for Multiple Host, Multiple GPUs

26
© 2012, NVIDIA

Communication Between GPUs in Different Nodes

• Requires network communication
– Currently requires data to first be transferred to host

• Steps for an exchange:
– GPU->CPU transfer
– CPU exchanges via network

• For example, MPI_Sendrecv
• Just like you would do for non-GPU code

– CPU->GPU transfer

• If each node also has multiple GPUs:
– Can continue using P2P within the node, netw outside the node
– Can overlap some PCIe transfers with network communication

• In addition to kernel execution

27
© 2012, NVIDIA

Code Pattern

28

 cudaMemcpyAsync(..., stream_halo[i]);
 cudaStreamSynchronize(stream_halo[i]);
 MPI_Sendrecv(...);
 cudaMemcpyAsync(..., stream_halo[i]);

© 2012, NVIDIA

Overlapping MPI and PCIe Transfers

© 2012, NVIDIA 29

 for(int i=0; i<num_gpus-1; i++)
 cudaMemcpyPeerAsync(..., stream_halo[i]);
 cudaSetDevice(gpu[num_gpus-1]);
 cudaMemcpyAsync(..., stream_halo[num_gpus-1]);

 for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream_halo[i]);

 for(int i=1; i<num_gpus; i++)
 cudaMemcpyPeerAsync(..., stream_halo[i]);
 cudaSetDevice(gpu[0]);
 cudaMemcpyAsync(..., stream_halo[0]);
 MPI_Sendrecv(...);

 for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream_halo[i]);

 cudaSetDevice(gpu[0]);
 cudaMemcpyAsync(..., stream_halo[0]);
 MPI_Sendrecv(...);

 cudaSetDevice(gpu[num_gpus-1]);
 cudaMemcpyAsync(..., stream_halo[num_gpus-1]);

Case Study

30
© 2012, NVIDIA

Case Study: TTI FWM

• TTI Forward Wave Modeling
– Fundamental part of TTI RTM
– 3DFD, 8th order in space, 2nd order in time
– Regular grid
– 1D domain decomposition

• Data set:
– 512x512x512 cube
– Requires ~7 GB working set

• Experiments:
– Throughput increase over 1 GPU
– Single node, 4-GPU “tree”

© 2012, NVIDIA 31

Case Study: Time Breakdown

• Single step (single 8-GPU node):
– Halo computation: 1.1 ms
– Internal computation: 12.7 ms
– Halo-exchange: 5.9 ms
– Total: 13.8 ms

• Communication is completely hidden
– 12.7 ms for internal computation, 5.9 ms for communication

• ~95% scaling: halo+internal: 13.8 ms (13.0 ms if done without
splitting computation into halo and internal)

– Thus, plenty of time for slower communication (network)

32

© 2012, NVIDIA

Case Study: Multiple Nodes

• Test system:
– 3 servers, each with 2 M2090 GPUs, Infiniband DDR interconnect

• Performance:
– 512x512x512 domain:

• 1 node x 2 GPUs: 1.98x
• 2 nodes x 1 GPU: 1.97x
• 2 nodes x 2 GPUs: 3.98x
• 3 nodes x 2 GPUs: 4.50x

– 768x768x768 domain:
• 3 nodes x 2 GPUs: 5.60x

• Test system:
– Communication (PCIe and IB DDR2) is hidden when each GPU gets ~100 slices

• Network is ~68% of all communication time

– IB QDR hides communication when each GPU gets ~70 slices

© 2012, NVIDIA 33

Communication takes longer than
internal computation

Multi-GPU, Streams, and Events

34
© 2012, NVIDIA

Multi-GPU, Streams, and Events

• CUDA streams and events are per device (GPU)
– Determined by the GPU that’s current at the time of their creation
– Each device has its own default stream (aka 0- or NULL-stream)

• Streams and:
– Kernels: can be launched to a stream only if the stream’s GPU is current
– Memcopies: can be issued to any stream

• even if the stream doesn’t belong to the current GPU
• Driver will ensure that all calls to that stream complete before bytes are transferred

– Events: can be recorded only to a stream if the stream’s GPU is current

• Synchronization/query:
– It is OK to query or synchronize with any event/stream

• Even if stream/event does not belong to the current GPU

35
© 2012, NVIDIA

Example 1

36

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

OK:
• device 1 is current
• eventB and streamB belong to device 1

© 2012, NVIDIA

Example 2

37

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamA>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

ERROR:
• device 1 is current
• streamA belongs to device 0

© 2012, NVIDIA

Example 3

38

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventA, streamB);

ERROR:
• eventA belongs to device 0
• streamB belongs to device 1

© 2012, NVIDIA

Example 4

39

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

device-1 is current

device-0 is current

© 2012, NVIDIA

Example 4

40

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

OK:
• device-0 is current
• synchronizing/querying events/streams of other
devices is allowed
• here, device-0 won’t start executing the kernel until
device-1 finishes its kernel

© 2012, NVIDIA

Example 4

41

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

OK:
• device-0 is current
• synchronizing/querying events/streams of other
devices is allowed
• here, device 0 won’t start executing the kernel until
device 1 finishes its kernel

© 2012, NVIDIA

Example 5

42

int gpu_A = 0;
int gpu_B = 1;

cudaSetDevice(gpu_A);
cudaMalloc(&d_A, num_bytes);

int accessible = 0;
cudaDeviceCanAccessPeer(&accessible, gpu_B, gpu_A);
if(accessible)
{
 cudaSetDevice(gpu_B);
 cudaDeviceEnablePeerAccess(gpu_A, 0);
 kernel<<<...>>>(d_A);
}

Even though kernel executes on gpu2, it
will access (via PCIe) memory allocated
on gpu1

© 2012, NVIDIA

Additional APIs Useful for Multi-GPU

43
© 2012, NVIDIA

cudaIpc* API

• Processes on the same host can access each others’ GPU memory
– Example use: bypass communication via host with MPI, use P2P

• MPI ranks on the same node transfer directly to each other’s GPU
• As opposed to with MPI copy first, then copying to GPU

• Approach:
– Process A gets a handle to its pointer, sends it to process B
– Process B opens the handle: gets a pointer to A’s address
– Process B (or its GPU kernels) uses the pointer
– Process B closes the handle

© 2012, NVIDIA 44

Process A:
cudaIpcMemHandle_t handle_a;
cudaIpcGetMemHandle(&handle_a, (void*)d_a);

Process B:
cudaIpcOpenMemHandle((void**)&d_neighbor, neighbors_a, cudaIpcMemLazyEnablePeerAccess);
 // use d_neighbor like you would a locally allocated pointer
cudaIpcCloseMemHandle(d_neighbor);

GPU-Aware MPI

• MPI calls can take GPU pointers
– mvapich, openmpi
– Works with C/C++, Fortran, CUDA C, CUDA Fortran, directives-based code

• Benefits:
– Simplifies code (no need to explicitly copy GPU<->CPU)
– Can pipeline transfers for better performance:

• Break the transfer into smaller pieces
• Pipeline the transfer of pieces: overlap PCIe and Netw for all but the first and last

piece

• Not yet available:
– P2P path when MPI ranks are on the same node

© 2012, NVIDIA 45

Host (CPU) NUMA and CPU/GPU Transfers

46
© 2012, NVIDIA

Additional System Issues to Consider

• CPU NUMA affects PCIe transfer throughput in dual-IOH systems
– Transfers to “remote” GPUs achieve lower throughput

• One additional QPI hop

– This affects any PCIe device, not just GPUs
• Network cards, for example

– When possible, lock CPU threads to a socket that’s “closest” to the GPU
• For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc.

• Dual-IOH systems prevent PCIe P2P across the IOH chips
– QPI link between the IOH chips isn’t compatible with PCIe P2P
– P2P copies will still work, but will get staged via host memory

© 2012, NVIDIA 47

“Local” D2H Copy: 6.3 GB/s

48

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1

© 2012, NVIDIA

“Remote” D2H Copy: 4.3 GB/s

49

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1

© 2012, NVIDIA

Summary of CPU-GPU Copy Throughputs on One System

50

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1

• Note that these vary
among different systems
– Different BIOS settings
– Different IOH chips

• Local:
– D2H: 6.3 GB/s
– H2D: 5.7 GB/s

• Remote:
– D2H: 4.3 GB/s
– H2D: 4.9 GB/s

© 2012, NVIDIA

Summary of P2P Throughputs, PCIe gen2

51
© 2012, NVIDIA

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1 PCIe switch

• Via PCIe switch:
– GPUs attached to the same PCIe switch
– Simplex: 6.3 GB/s (12 GB/s gen3)
– Duplex: 12.2 GB/s (22 GB/s gen3)

• Via IOH chip:
– GPUs attached to the same IOH chip
– Simplex: 5.3 GB/s
– Duplex: 9.0 GB/s

• Via host:
– GPUs attached to different IOH chips
– Simplex: 2.2 GB/s
– Duplex: 3.9 GB/s

Determining Topology/Locality of a System

• Hardware Locality tool:

– http://www.open-mpi.org/projects/hwloc/

– Cross-OS, cross-platform

© 2012, NVIDIA 52

http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/projects/hwloc/

Summary

• CUDA provides a number of features to facilitate multi-GPU programming
• Single-process / multiple GPUs:

– Unified virtual address space
– Ability to directly access peer GPU’s data
– Ability to issue P2P memcopies

• No staging via CPU memory
• High aggregate throughput for many-GPU nodes

• Multiple-processes:
– GPU Direct to maximize performance when both PCIe and IB transfers are

needed

• Streams and asynchronous kernel/copies
– Allow overlapping of communication and execution
– Applies whether using single- or multiple threads to control GPUs

• Keep NUMA in mind on multi-IOH systems

© 2012, NVIDIA 53

Questions?

54
© 2012, NVIDIA

