

Multi-GPU Programming

Paulius Micikevicius Developer Technology, NVIDIA

© 2012, NVIDIA

Outline

- Usecases and a taxonomy of scenarios
- Inter-GPU communication:
 - Single host, multiple GPUs
 - Multiple hosts
- Case study
- Multiple GPUs, streams, and events
- Additional APIs:
 - GPU-aware MPI, cudalpc*
- NUMA effect on GPU-CPU communication

• Why multi-GPU?

- To further speedup computation
- Working set exceeds a single GPU's memory
- Having multiple GPUs per node improves perf/W
 - Amortize the CPU server power among more GPUs
 - Same goes for the cost

Inter-GPU communication may be needed

- Two general cases:
 - GPUs within a single network node
 - GPUs across network nodes

Taxonomy of Inter-GPU Communication Cases

		Network nodes	
		Single	Multiple
Single process	Single-threaded		N/A
	Multi-threaded		N/A
Multiple processes			

GPUs can communicate via P2P or shared host memory

GPUs communicate via host-side message passing

Minimal Review of Streams and Async API

Overlap kernel and memory copy

• Requirements:

- D2H or H2D memcopy from pinned memory
- Device with compute capability ≥ 1.1 (G84 and later)
- Kernel and memcopy in different, non-0 streams
- Code:

cudaStream_t stream1, stream2; cudaStreamCreate(&stream1); cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(...);

potentially overlapped

Streams and Async API

Default CUDA API:

- Kernel launches are asynchronous with CPU
- Memcopies (D2H, H2D) block CPU thread until transfer completes
- CUDA calls are serialized by the driver
- Streams and async functions provide:
 - Memcopies (D2H, H2D) asynchronous with CPU and GPU
 - Ability to concurrently execute a kernel, memcopies, and CPU code
- Stream: sequence of operations that execute in issue-order on GPU
 - Operations from different streams may be interleaved
 - A kernel and memcopy from different streams can be overlapped

Communication for Single Host, Multiple GPUs

Managing multiple GPUs from a single CPU thread

- CUDA calls are issued to the *current* GPU
 - Exception: peer-to-peer memcopies
- cudaSetDevice() sets the current GPU
- Current GPU can be changed while async calls (kernels, memcopies) are running
 - The following code will have both GPUs executing concurrently:

cudaSetDevice(0); kernel<<<...>>>(...); cudaMemcpyAsync(...); cudaSetDevice(1); kernel<<<...>>>(...);

Unified Addressing (CUDA 4.0 and later)

• CPU and GPU allocations use unified virtual address space

- Think of each one (CPU, GPU) getting its own range of a single VA space
 - Driver/GPU can determine from an address where data resides
 - An allocation resides on a single device (an array doesn't span several GPUs)
- Requires:
 - 64-bit Linux or 64-bit Windows with TCC driver
 - Fermi or later architecture GPUs (compute capability 2.0 or higher)
 - CUDA 4.0 or later
- A GPU can dereference a pointer that is:
 - an address on another GPU
 - an address on the host (CPU)

UVA and Multi-GPU Programming

• Two interesting aspects:

- Peer-to-peer (P2P) memcopies
- Accessing another GPU's addresses
- Both require peer-access to be enabled:
 - cudaDeviceEnablePeerAccess(peer_device, 0)
 - Enables current GPU to access addresses on *peer_device* GPU
 - cudaDeviceCanAccessPeer(&accessible, dev_X, dev_Y)
 - Checks whether dev_X can access memory of dev_Y
 - Returns 0/1 via the first argument
 - Peer-access is not available if:
 - One of the GPUs is pre-Fermi
 - GPUs are connected to different IOH chips on the motherboard
 - » QPI and PCIe protocols disagree on P2P

Peer-to-peer memcopy

- cudaMemcpyPeerAsync(void* dst_addr, int dst_dev, void* src_addr, int src_dev, size_t num_bytes, cudaStream_t stream)
 - Copies the bytes between two devices
 - Currently data is "pushed": source GPU's DMA engine carries out the copy
 - There is also a blocking (as opposed to Async) version
- If peer-access is enabled:
 - Bytes are transferred along the shortest PCIe path
 - No staging through CPU memory
- If peer-access is not available
 - CUDA driver stages the transfer via CPU memory

How Does P2P Memcopy Help Multi-GPU?

Ease of programming

- No need to manually maintain memory buffers on the host for inter-GPU exchanges
- Increased throughput
 - Especially when communication path does not include IOH (GPUs connected to a PCIe switch):
 - Single-directional transfers achieve up to ~6.6 GB/s (~12 GB/s for gen3)
 - Duplex transfers achieve ~12.2 GB/s (~22 GB/s for gen3)
 - ~5 GB/s if going through the host
 - GPU-pairs can communicate concurrently if paths don't overlap

Example: 1D Domain Decomposition and P2P

• Each subdomain has at most two neighbors

- "left"/"right"
- Communication graph = path
- GPUs are physically arranged into a tree(s)
 - GPUs can be connected to a PCIe switch
 - PCIe switches can be connected to another switch

• A path can be efficiently mapped onto a tree

- Multiple exchanges can happen without contending for the same PCIe links
- Aggregate exchange throughput:
 - Approaches (PCIe bandwdith) * (number of GPU pairs)
 - Typical achieved PCIe gen2 simplex bandwidth on a single link: 6 GB/s

Example: 4-GPU Topology

- Two ways to implement 1D exchange
 - Left-right approach
 - Pairwise approach
 - Both require two stages

Example: Left-Right Approach for 4 GPUs

Stage 1: send "right" / receive from "left"

Stage 2: send "left" / receive from "right"

- The 3 transfers in a stage happen concurrently
 - Achieved throughput: ~15 GB/s (4-MB messages)
- No contention for PCIe links
 - PCIe links are duplex
 - Note that no link has 2 communications in the same "direction"

Example: Left-Right Approach for 8 GPUs

- Stage 1 shown above (Stage 2 is basically the same)
- Achieved aggregate throughput: ~34 GB/s

Example: Pairwise Approach for 4 GPUs

Stage 1: even-odd pairs

Stage 2: odd-even pairs

- No contention for PCIe links
 - All transfers are duplex, PCIe links are duplex
 - Note that no link has more than 1 exchange
 - Not true for 8 or more GPUs

Example: Even-Odd Stage of Pairwise Approach for 8 GPUs

- Odd-even stage:
 - Will always have contention for 8 or more GPUs
- Even-odd stage:
 - Will not have contention

1D Communication

- Pairwise approach slightly better for 2-GPU case
- Left-Right approach better for the other cases

Code for the Left-Right Approach

for(int i=0; i<num_gpus-1; i++) // "right" stage
 cudaMemcpyPeerAsync(d_a[i+1], gpu[i+1], d_a[i], gpu[i], num_bytes, stream[i]);</pre>

for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream[i]);</pre>

for(int i=1; i<num_gpus; i++) // "left" stage
 cudaMemcpyPeerAsync(d_b[i-1], gpu[i-1], d_b[i], gpu[i], num_bytes, stream[i]);</pre>

- Code assumes that addresses and GPU IDs are stored in arrays
- The middle loop isn't necessary for correctness
 - Improves performance by preventing the two stages from interfering with each other (15 vs 11 GB/s for the 4-GPU example)

Possible Pattern for Multi-GPU Code

- Stage 1:
 - Compute halos (data to be shared with other GPUs)
- Stage 2:
 - Exchange data with other GPUs
 - Use asynchronous copies
 - Compute over internal data
- Synchronize

- These can overlap when issued to different streams
- Scaling is linear if compute is longer than exchange

Example: Two Subdomains

Example: Two Subdomains

GPU TECHNOLOGY CONFERENCE

Code Pattern

for(int istep=0; istep<nsteps; istep++)</pre> for(int i=0; i<num gpus; i++)</pre> cudaSetDevice(gpu[i]); kernel<<<..., stream_halo[i]>>>(...); Compute halos kernel<<<..., stream halo[i]>>>(...); cudaStreamQuery(stream halo[i]); kernel<<<..., stream_internal[i]>>>(...); Compute internal data for(int i=0; i<num gpus-1; i++)</pre> cudaMemcpyPeerAsync(..., stream_halo[i]); for(int i=0; i<num gpus; i++)</pre> Exchange halos cudaStreamSynchronize(stream_halo[i]); for(int i=1; i<num_gpus; i++)</pre> cudaMemcpyPeerAsync(..., stream halo[i]); for(int i=0; i<num_gpus; i++)</pre> cudaSetDevice(gpu[i]); Synchronize before next step cudaDeviceSynchronize(); // swap input/output pointers

Communication for Multiple Host, Multiple GPUs

Communication Between GPUs in Different Nodes

Requires network communication

- Currently requires data to first be transferred to host

• Steps for an exchange:

- GPU->CPU transfer
- CPU exchanges via network
 - For example, MPI_Sendrecv
 - Just like you would do for non-GPU code
- CPU->GPU transfer
- If each node also has multiple GPUs:
 - Can continue using P2P within the node, netw outside the node
 - Can overlap some PCIe transfers with network communication
 - In addition to kernel execution

Code Pattern

cudaMemcpyAsync(..., stream_halo[i]); cudaStreamSynchronize(stream_halo[i]); MPI_Sendrecv(...); cudaMemcpyAsync(..., stream_halo[i]);

Overlapping MPI and PCIe Transfers

for(int i=0; i<num_gpus-1; i++)
 cudaMemcpyPeerAsync(..., stream_halo[i]);
cudaSetDevice(gpu[num_gpus-1]);
cudaMemcpyAsync(..., stream_halo[num_gpus-1]);</pre>

for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream_halo[i]);</pre>

for(int i=1; i<num_gpus; i++)
 cudaMemcpyPeerAsync(..., stream_halo[i]);
cudaSetDevice(gpu[0]);
cudaMemcpyAsync(..., stream_halo[0]);
MPI_Sendrecv(...);</pre>

for(int i=0; i<num_gpus; i++)
 cudaStreamSynchronize(stream_halo[i]);</pre>

cudaSetDevice(gpu[0]); cudaMemcpyAsync(..., stream_halo[0]); MPI_Sendrecv(...);

cudaSetDevice(gpu[num_gpus-1]); cudaMemcpyAsync(..., stream_halo[num_gpus-1]);

Case Study

Case Study: TTI FWM

• TTI Forward Wave Modeling

- Fundamental part of TTI RTM
- 3DFD, 8th order in space, 2nd order in time
- Regular grid
- 1D domain decomposition
- Data set:
 - 512x512x512 cube
 - Requires ~7 GB working set
- Experiments:
 - Throughput increase over 1 GPU
 - Single node, 4-GPU "tree"

Case Study: Time Breakdown

• Single step (single 8-GPU node):

- Halo computation: 1.1 ms
- Internal computation: 12.7 msHalo-exchange: 5.9 ms
- Total: 13.8 ms

Communication is completely hidden

- 12.7 ms for internal computation, 5.9 ms for communication
 - ~95% scaling: halo+internal: 13.8 ms (13.0 ms if done without splitting computation into halo and internal)
- Thus, plenty of time for slower communication (network)

Case Study: Multiple Nodes

Test system:

3 servers, each with 2 M2090 GPUs, Infiniband DDR interconnect

Performance:

- 512x512x512 domain:
 - 1 node x 2 GPUs: 1.98x 1.97x

3.98x

4.50x

- 2 nodes x 1 GPU:
- 2 nodes x 2 GPUs:
- 3 nodes x 2 GPUs:
- 768x768x768 domain:
 - 3 nodes x 2 GPUs: 5.60x

Test system:

- Communication (PCIe and IB DDR2) is hidden when each GPU gets ~100 slices
 - Network is ~68% of all communication time
- IB QDR hides communication when each GPU gets ~70 slices

Communication takes longer than

internal computation

Multi-GPU, Streams, and Events

Multi-GPU, Streams, and Events

CUDA streams and events are <u>per device</u> (GPU)

- Determined by the GPU that's current at the time of their creation
- Each device has its own *default* stream (aka 0- or NULL-stream)
- Streams and:
 - Kernels: can be launched to a stream only if the stream's GPU is current
 - Memcopies: can be issued to any stream
 - even if the stream doesn't belong to the current GPU
 - Driver will ensure that all calls to that stream complete before bytes are transferred
 - Events: can be recorded only to a stream if the stream's GPU is current
- Synchronization/query:
 - It is OK to query or synchronize with any event/stream
 - Even if stream/event does not belong to the current GPU

Example 1

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

OK:device 1 is currenteventB and streamB belong to device 1

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamA>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

ERROR:device 1 is currentstreamA belongs to device 0

Example 3

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventA, streamB);

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

ERROR:

• eventA belongs to device **0**

streamB belongs to device 1

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0); cudaEventSynchronize(eventB); kernel<<<..., streamA>>>(...); // streamA and eventA belong to device-0

// streamB and eventB belong to device-1

device-1 is current

device-0 is current

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0); cudaEventSynchronize(eventB); kernel<<<..., streamA>>>(...); // streamA and eventA belong to device-0

// streamB and eventB belong to device-1

OK:

device-0 is current

• synchronizing/querying events/streams of other devices is allowed

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0); cudaEventSynchronize(eventB); kernel<<<..., streamA>>>(...); // streamA and eventA belong to device-0

// streamB and eventB belong to device-1

OK:

- device-0 is current
- synchronizing/querying events/streams of other devices is allowed
- here, device 0 won't start executing the kernel until device 1 finishes its kernel

int gpu_A = 0; int gpu_B = 1;

```
cudaSetDevice( gpu_A );
cudaMalloc( &d_A, num_bytes );
```

```
int accessible = 0;
cudaDeviceCanAccessPeer( &accessible, gpu_B, gpu_A );
```

if(accessible)

}

```
cudaSetDevice(gpu_B );
cudaDeviceEnablePeerAccess( gpu_A, 0 );
kernel<<<...>>>( d_A);
```

Even though kernel executes on gpu2, it will access (via PCIe) memory allocated on gpu1

ECHNOLOGY CONFERENCE

Additional APIs Useful for Multi-GPU

• Processes on the same host can access each others' GPU memory

- Example use: bypass communication via host with MPI, use P2P
 - MPI ranks on the same node transfer directly to each other's GPU
 - As opposed to with MPI copy first, then copying to GPU
- Approach:
 - Process A gets a handle to its pointer, sends it to process B
 - Process B opens the handle: gets a pointer to A's address
 - Process B (or its GPU kernels) uses the pointer
 - Process B closes the handle

Process A:

cudalpcMemHandle_t handle_a; cudalpcGetMemHandle(&handle_a, (void*)d_a);

Process B:

cudaIpcOpenMemHandle((void**)&d_neighbor, neighbors_a, cudaIpcMemLazyEnablePeerAccess);

// use d_neighbor like you would a locally allocated pointer cudalpcCloseMemHandle(d neighbor);

DU TECHNOLOG

GPU-Aware MPI

• MPI calls can take GPU pointers

- mvapich, openmpi
- Works with C/C++, Fortran, CUDA C, CUDA Fortran, directives-based code

• Benefits:

- Simplifies code (no need to explicitly copy GPU<->CPU)
- Can pipeline transfers for better performance:
 - Break the transfer into smaller pieces
 - Pipeline the transfer of pieces: overlap PCIe and Netw for all but the first and last piece

• Not yet available:

- P2P path when MPI ranks are on the same node

Host (CPU) NUMA and CPU/GPU Transfers

Additional System Issues to Consider

• CPU NUMA affects PCIe transfer throughput in dual-IOH systems

- Transfers to "remote" GPUs achieve lower throughput
 - One additional QPI hop
- This affects any PCIe device, not just GPUs
 - Network cards, for example
- When possible, lock CPU threads to a socket that's "closest" to the GPU
 - For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc.

• Dual-IOH systems prevent PCIe P2P across the IOH chips

- QPI link between the IOH chips isn't compatible with PCIe P2P
- P2P copies will still work, but will get staged via host memory

"Local" D2H Copy: 6.3 GB/s

GPU TECHNOLOGY CONFERENCE

"Remote" D2H Copy: 4.3 GB/s

TECHNOLOGY CONFERENCE

GPU

Summary of CPU-GPU Copy Throughputs on One System

- Note that these vary among different systems
 - Different BIOS settings
 - Different IOH chips
- Local:
 - D2H: 6.3 GB/s
 - H2D: 5.7 GB/s
- Remote:
 - D2H: 4.3 GB/s
 - H2D: 4.9 GB/s

Summary of P2P Throughputs, PCIe gen2

- Via PCIe switch:
 - GPUs attached to the same PCIe switch
 - Simplex: 6.3 GB/s (12 GB/s gen3)
 - Duplex: 12.2 GB/s (22 GB/s gen3)
- Via IOH chip:
 - GPUs attached to the same IOH chip
 - Simplex: 5.3 GB/s
 - Duplex: 9.0 GB/s
- Via host:
 - GPUs attached to different IOH chips
 - Simplex: 2.2 GB/s
 - Duplex: 3.9 GB/s

Determining Topology/Locality of a System

- Hardware Locality tool:
 - <u>http://www.open-mpi.org/projects/hwloc/</u>
 - Cross-OS, cross-platform

Summary

- CUDA provides a number of features to facilitate multi-GPU programming
- Single-process / multiple GPUs:
 - Unified virtual address space
 - Ability to directly access peer GPU's data
 - Ability to issue P2P memcopies
 - No staging via CPU memory
 - High aggregate throughput for many-GPU nodes
- Multiple-processes:
 - GPU Direct to maximize performance when both PCIe and IB transfers are needed
- Streams and asynchronous kernel/copies
 - Allow overlapping of communication and execution
 - Applies whether using single- or multiple threads to control GPUs
- Keep NUMA in mind on multi-IOH systems

GPU TE

Questions?