

GPU Performance Analysis and Optimization

Paulius Micikevicius Developer Technology, NVIDIA,

© 2012, NVIDIA

Goals of This Talk

- Give insight into how hardware operates
 - Fermi and Kepler
- Connect hardware operation to performance
- Provide guidelines for diagnosing and optimizing performance limiters
 - Illustrate the use with brief case studies
 - some Fermi, some Kepler
- Quick review of things to keep in mind when transitioning from Fermi to Kepler

- Requirements for GPU performance
- Exposing Sufficient parallelism
- Optimizing GPU Memory Access
 - Global memory
 - Shared memory
- Optimizing GPU instruction execution
- Review of Kepler considerations

Additional Resources

- More information on topics for which we don't have time in this session
- Kepler architecture:
 - GTC12 Session S0642: Inside Kepler
 - Kepler whitepapers (<u>http://www.nvidia.com/object/nvidia-kepler.html</u>)
- Assessing performance limiters:
 - GTC10 Session 2012: Analysis-driven Optimization (slides 5-19):
 - <u>http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf</u>
- Profiling tools:
 - GTC12 sessions:
 - S0419: Optimizing Application Performance with CUDA Performance Tools
 - S0420: Nsight IDE for Linux and Mac
 - ...
 - CUPTI documentation (describes all the profiler counters)
 - Included in every CUDA toolkit (/cuda/extras/cupti/doc/Cupti_Users_Guide.pdf
- Register spilling:
 - Webinar:
 - Slides: http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
 - Video: <u>http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4</u>
- GPU computing webinars in general:
 - <u>http://developer.nvidia.com/gpu-computing-webinars</u>

Determining Performance Limiter for a Kernel

• Kernel performance is limited by one of:

- Memory bandwidth
- Instruction bandwidth
- Latency
 - Usually the culprit when neither memory nor instruction throughput is a highenough percentage of theoretical bandwidth

Determining which limiter is the most relevant for your kernel

- Not really covered in this presentation due to time
- Covered in more detail in session 2012 of GTC2010:
 - Slides: 5-19, 45-49
 - Link: http://www.nvidia.com/content/GTC-2010/pdfs/2012 GTC2010v2.pdf
 - Video: http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html

- Topics relevant to 1% (or less) of codes and developers
 - So, if you're not trying to squeeze out the last few % of performance, you can ignore these
- Indicated with the following logo:

D

Main Requirements for GPU Performance

- Expose sufficient parallelism
- Coalesce memory access
- Have coherent execution within warp

EXPOSING SUFFICIENT PARALLELISM

Kepler: Level of Parallelism Needed

• To saturate instruction bandwidth:

- Fp32 math: ~1.7K independent instructions per SM
- Lower for other, lower-throughput instructions
- Keep in mind that Kepler SM can track up to 2048 threads
- To saturate memory bandwidth:
 - 100+ independent lines per SM

Memory Parallelism

• Achieved Kepler memory thoughput

- As a function of the number of independent requests per SM
- Request: 128-byte line

Exposing Sufficient Parallelism

• What hardware ultimately needs:

- Arithmetic pipes:
 - sufficient number of independent instructions
 - accommodates multi-issue and latency hiding
- Memory system:
 - sufficient requests in flight to saturate bandwidth
- Two ways to increase parallelism:
 - More independent work within a thread (warp)
 - ILP for math, independent accesses for memory
 - More concurrent threads (warps)

Occupancy

Occupancy: number of concurrent threads per SM

- Expressed as either:
 - the number of threads (or warps),
 - percentage of maximum threads

Determined by several factors

- (refer to Occupancy Calculator, CUDA Programming Guide for full details)
- Registers per thread
 - SM registers are partitioned among the threads
- Shared memory per threadblock
 - SM shared memory is partitioned among the blocks
- Threads per threadblock
 - Threads are allocated at threadblock granularity

Kepler SM resources

- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 2048 concurrent threads
- Up to 16 concurrent threadblocks

GPU TEC

Occupancy and Performance

- Note that 100% occupancy isn't needed to reach maximum performace
 - Once the "needed" occupancy is reached, further increases won't improve performance
- Needed occupancy depends on the code
 - More independent work per thread -> less occupancy is needed
 - Memory-bound codes tend to need more occupancy
 - Higher latency than for arithmetic, need more work to hide it
 - We'll discuss occupancy for memory- and math-bound codes later in the presentation

Exposing Parallelism: Grid Configuration

- Grid: arrangement of threads into threadblocks
- Two goals:
 - Expose enough parallelism to an SM
 - Balance work across the SMs
- Several things to consider when launching kernels:
 - Number of threads per threadblock
 - Number of threadblocks
 - Amount of work per threadblock

Threadblock Size and Occupancy

- Threadblock size is a multiple of warp size (32)
 - Even if you request fewer threads, HW rounds up
- Threadblocks can be too small
 - Kepler SM can run up to 16 threadblocks concurrently
 - SM may reach the block limit before reaching good occupancy
 - Example: 1-warp blocks -> 16 warps per Kepler SM (probably not enough)
- Threadblocks can be too big
 - Quantization effect:
 - Enough SM resources for more threads, not enough for another large block
 - A threadblock isn't started until resources are available for all of its threads

Threadblock Sizing

- SM resources:
 - Registers
 - Shared memory

per block

Case Study 1: Threadblock Sizing

• Non-hydrostatic Icosahedral Model (NIM)

- Global weather simulation code, NOAA
- vdmintv kernel:
 - 63 registers per thread, 3840 bytes of SMEM per warp
 - At most 12 warps per Fermi SM (limited by SMEM)

• Initial grid: 32 threads per block, 10,424 blocks

- Blocks are too small:
 - 8 warps per SM, limited by number of blocks (Fermi's limit was 8)
 - Code achieves a small percentage (~30%) of both math and memory bandwidth
- Time: 6.89 ms

Case Study 1: Threadblock Sizing

- Optimized config: 64 threads per block, 5,212 blocks
 - Occupancy: 12 warps per SM, limited by SMEM
 - Time: 5.68 ms (1.21x speedup)
- Further optimization:
 - Reduce SMEM consumption by moving variables to registers
 - 63 registers per thread, 1536 bytes of SMEM per warp
 - Occupancy: 16 warps per SM, limited by registers
 - Time: 3.23 ms (2.13x speedup over original)

Waves and Tails

Wave of threadblocks

- A set of threadblocks that run concurrently on GPU
- Maximum size of the wave is determined by:
 - How many threadblocks can fit on one SM
 - Number of threads per block
 - Resource consumption: registers per thread, SMEM per block
 - Number of SMs

Any grid launch will be made up of:

- Some number of *full* waves
- Possibly one *tail*: wave with fewer than possible blocks
 - Last wave by definition
 - Happens if the grid size is not divisible by wave size

- Tail underutilizes GPU
 - Impacts performance if tail is a significant portion of time
- Example:
 - GPU with 8 SMs
 - Code that can run 1 threadblock per SM at a time
 - Wave size = 8 blocks
 - Grid launch: 12 threadblocks
- 2 waves:
 - 1 full
 - Tail with 4 threadblocks
 - Tail utilizes 50% of GPU, compared to full-wave
 - Overall GPU utilization: 75% of possible

Tail Effect

• <u>A concern only when</u>:

- Launching few threadblocks (no more than a few waves)
- Tail effect is negligible when launching 10s of waves
 - If that's your case, you can ignore the following info
- Tail effect can occur even with perfectly-sized grids
 - Threadblocks don't stay in lock-step

• To combat tail effect:

- Spread the work of one thread among several threads
 - Increases the number of blocks -> increases the number of waves
- Spread the threads of one block among several
 - Improves load balancing during the tail
- Launch independent kernels into different streams
 - Hardware will execute threadblocks from different kernels to fill the GPU

Tail Effect: Large vs Small Threadblocks

2 waves of threadblocks
 Tail is running at 25% of possible

- Tail is 50% of time
 - Could be improved if the tail work could be better balanced across SMs

wave 0 wave 1 (tail)

wave 0

wave 1 (tail)

- 2 waves of threadblocks
 - Tail is running at 75% of possible
 - Tail is 25% of time
 - Tail work is spread across more threadblocks, better balanced across SMs
 - Estimated speedup: 1.5x (time reduced by 33%)

80% of time code runs at 100% of its ability, 20% of time it runs at 50% of ability: 90% of possible

95% of time code runs at 100% of its ability, 5% of time it runs at 50% of ability: 97.5% of possible

General Guidelines

• Threadblock size choice:

- Start with 128-256 threads per block
 - Adjust up/down by what best matches your function
 - Example: stencil codes prefer larger blocks to minimize halos
- Multiple of warp size (32 threads)
- If occupancy is critical to performance:
 - Check that block size isn't precluding occupancy allowed by register and SMEM resources

• Grid size:

- 1,000 or more threadblocks
 - 10s of waves of threadblocks: no need to think about tail effect
 - Makes your code ready for several generations of future GPUs

GLOBAL MEMORY

Kepler Memory Hierarchy

Memory Hierarchy Review

• Registers

- Storage local to each threads
- Compiler-managed

• Shared memory / L1

- 64 KB, program-configurable into shared:L1
- Program-managed
- Accessible by all threads in the same threadblock
- Low latency, high bandwidth: 1.5-2 TB/s on Kepler GK104

Read-only cache

- Up to 48 KB per Kepler SM
- Hardware-managed (also used by texture units)
- Used for read-only GMEM accesses (not coherent with writes)
- L2
 - Up to: 512 KB on Kepler GK104, 1.5 MB on Kepler GK110 (768 KB on Fermi)
 - Hardware-managed: all accesses to global memory go through L2, including CPU and peer GPU

Global memory

- Accessible by all threads, host (CPU), other GPUs in the same system
- Higher latency (400-800 cycles)
- Tesla K10 bandwidth: 2x160 GB/s (2 chips on a board)

Blocking for L1, Read-only, L2 Caches

- Short answer: DON'T
- GPU caches are not intended for the same use as CPU caches
 - Smaller size (especially per thread), so not aimed at temporal reuse
 - Intended to smooth out some access patterns, help with spilled registers, etc.
- Usually not worth trying to cache-block like you would on CPU
 - 100s to 1,000s of run-time scheduled threads competing for the cache
 - If it is possible to block for L1 then it's possible block for SMEM
 - Same size
 - Same or higher bandwidth
 - Guaranteed locality: hw will not evict behind your back

L1 Sizing

• Shared memory and L1 use the same 64KB

- Program-configurable split:
 - Fermi: 48:16, 16:48
 - Kepler: 48:16, 16:48, 32:32
- CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()
- Large L1 can improve performance when:
 - Spilling registers (more lines in the cache -> fewer evictions)
 - Some offset, small-stride access patterns
- Large SMEM can improve performance when:
 - Occupancy is limited by SMEM

ПСÓ

Global Memory Operations

- Memory operations are executed per warp
 - 32 threads in a warp provide memory addresses
 - Hardware determines into which lines those addresses fall
- Stores:
 - Invalidate L1, go at least to L2, 32-byte granularity
- Three types of loads:
 - Caching (default)
 - Non-caching
 - Read-only (new option in GK110)

Load Operation

Caching (default mode)

- Attempts to hit in L1, then L2, then GMEM
- Load granularity is 128-byte line
- Non-caching
 - Compile with –*Xptxas* –*dlcm=cg* option to nvcc
 - Attempts to hit in L2, then GMEM
 - Does not hit in L1, invalidates the line if it's in L1 already
 - Load granularity is 32 bytes
- Read-only
 - Loads via read-only cache:
 - Attempts to hit in Read-only cache, then L2, then GMEM
 - Load granularity is 32 bytes

Read-only Loads

• Go through the read-only cache

- Not coherent with writes
- Thus, addresses must not be written by the same kernel
- Two ways to enable:
 - Decorating pointer arguments as hints to compiler:
 - Pointer of interest: __restrict__ const
 - All other pointer arguments: ___restrict__
 - Conveys to compiler that no aliasing will occur
 - Using __ldg() intrinsic
 - Requires no pointer decoration
 - Requires GK110 hardware
 - On prior hardware you can get similar functionality with textures

Read-only Loads

• Go through the read-only cache

- Not coherent with writes
- Thus, addresses must not be written by the same kernel

Two ways to enable:

- Decorating pointer arguments as bints to compiler
 - Pointer of interest: _
 - All other pointer argum
 - Conveys to compiler the
- Using __ldg() intrinsic
 - Requires no pointer dec
- Requires GK110 hardw
 - On prior hardware you

```
_global___void kernel( ___restrict___ int *output,
___restrict__ const int *input )
```

```
output[idx] = ... + input[idx];
```

Read-only Loads

• Go through the read-only cache

- Not coherent with writes
- Thus, addresses must not be written by the same kernel

Two ways to enable:

- Decorating pointer argymonts as hints to compiler
 - Pointer of interest: _
 - All other pointer argum
 - Conveys to compiler the
- Using __ldg() intrinsic
 - Requires no pointer dec
- Requires GK110 hardw
 - On prior hardware you

```
_global___ void kernel( int *output,
int *input )
```

```
output[idx] = ... + __ldg( input[idx] );
```

• Non-caching loads can improve performance when:

- Loading scattered words or only part of a warp issues a load
 - Benefit: memory transaction is smaller, so useful payload is a larger percentage
 - Loading halos, for example
- Spilling registers (reduce line fighting with spillage)
- Read-only loads:
 - Can improve performance for scattered reads
 - Latency is a bit higher than for caching/non-caching loads

LI C S

• Scenario:

- Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 1 cache-line

- Warp needs 128 bytes
- 128 bytes move across the bus on a miss
- Bus utilization: 100%

DU TECHNOL
Non-caching/Read-only Load

• Scenario:

- Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 4 segments

- Warp needs 128 bytes
- 128 bytes move across the bus on a miss
- Bus utilization: 100%

• Scenario:

- Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 1 cache-line

- Warp needs 128 bytes
- 128 bytes move across the bus on a miss
- Bus utilization: 100%

DU TECHNOL

Non-caching/Read-only Load

• Scenario:

- Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 4 segments

- Warp needs 128 bytes
- 128 bytes move across the bus on a miss
- Bus utilization: 100%

• Scenario:

- Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within 2 cache-lines

- Warp needs 128 bytes
- 256 bytes move across the bus on misses
- Bus utilization: 50%

GPUTE

Non-caching/Read-only Load

• Scenario:

- Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within at most 5 segments

- Warp needs 128 bytes
- At most 160 bytes move across the bus
- Bus utilization: at least 80%
 - Some misaligned patterns will fall within 4 segments, so 100% utilization

• Scenario:

- All threads in a warp request the same 4-byte word

• Addresses fall within a single cache-line

- Warp needs 4 bytes
- 128 bytes move across the bus on a miss
- Bus utilization: 3.125%

DU TECHNOL

Non-caching/Read-only Load

• Scenario:

- All threads in a warp request the same 4-byte word

Addresses fall within a single segment

- Warp needs 4 bytes
- 32 bytes move across the bus on a miss
- Bus utilization: 12.5%

• Scenario:

Warp requests 32 scattered 4-byte words

Addresses fall within N cache-lines

- Warp needs 128 bytes
- N^*128 bytes move across the bus on a miss
- Bus utilization: 128 / (*N**128)

DU TECHNOL

Non-caching/Read-only Load

• Scenario:

Warp requests 32 scattered 4-byte words

• Addresses fall within N segments

- Warp needs 128 bytes
- N^*32 bytes move across the bus on a miss
- Bus utilization: $128 / (N^*32)$ (4x higher than caching loads)

Memory Throughput Analysis

• Two perspectives on the throughput:

- Application's point of view:
 - count only bytes requested by application
- HW point of view:
 - count all bytes moved by hardware
- The two views can be different:
 - Memory is accessed at 32 or 128 byte granularity
 - Scattered/offset pattern: application doesn't use all the hw transaction bytes
 - Broadcast: the same small transaction serves many threads in a warp
- Two aspects to inspect for performance impact:
 - Address pattern
 - Number of concurrent accesses in flight

Causes for Suboptimal Memory Performance

Suboptimal address patterns

- Throughput from HW point of view is significantly higher than from app point of view
- Four general categories:
 - **1) Offset** (not line-aligned) warp addresses
 - 2) Large strides between threads within a warp
 - 3) Each thread accesses a large contiguous region
 - 4) Irregular (scattered) addresses
- Insufficient concurrent accesses
 - Arithmetic intensity is low (code should be bandwidth-bound)
 - Throughput from HW point of view is much lower than theory
 - Say, below 60%

Two Ways to Investigate Address Patterns

- Profiler-computed load and store efficiency
 - Efficiency = bytes requested by the app / bytes transferred
 - Accurate, but will slow down code substantially:
 - Bytes-requested is measured by profiler instrumenting code for some load/store instruction
 - Thus, you may want to run for smaller data set

• Transactions per request:

- Fast: requires collecting 5 profiler counters
- Accurate if all accesses are for the same word-size (4-byte, 8-byte, etc.)
 - Less accurate if a kernel accesses words of varying sizes (still OK if you know statistical distribution)
- Loads:
 - Make sure to use caching loads for this analysis
 - Compute (l1_global_load_hit+l1_global_load_miss) to gld_request ratio
 - Compare to the ideal ratio: 32 threads/warp * word size in bytes / 128 bytes per line
 - 1.0 for 4-byte words, 2.0 for 8-byte words, 1.5 if 50% accesses are 4-byte and 50% are 8-byte
- Stores:
 - Compute global_store_transaction to gst_request ratio
 - Compare to the ideal ratio: 32 * word size in bytes / 128

Pattern Category 1: Offset Access

- Cause:
 - Region addressed by a warp is not aligned on cache-line boundary
- Issue:
 - Wasted bandwidth: only a fraction of some lines is used
 - Some increase in latency
- Symptom:
 - Transactions per request 1.5-2.0x higher than ideal
 - Likely: moderate to medium L1 hit rate
- Remedies:
 - Extra padding for data to force alignment
 - Try non-caching loads, read-only loads
 - Reduce overfetched bytes, but don't fully solve the problem

Pattern Category: Offset Access

- Cause:
 - Region addressed by a warp is not aligned on cache-line boundary
- Issue:
 - Wasted bandwidth: only a fraction of some lines is used
 - Some increase in latency

addresses from a warp

Iry non-caching loads, read-only loads

• Reduce overfetched bytes, but don't fully solve the problem

Pattern Category 1: Offset Access

- Cause:
 - Region addressed by a warp is not aligned on cache-line boundary
- Issue:
 - Wasted bandwidth: only a fraction of some lines is used
 - Some increase in latency
- Symptom:
 - Transactions per request 1.5-2.0x higher than ideal
 - Likely: moderate to medium L1 hit rate
- Remedies:
 - Full: extra padding for data to force alignment
 - Partial: non-caching loads, read-only loads
 - Reduce overfetched bytes, but don't fully solve the problem

Case Study 2: Offset Address Pattern

• Isotropic RTM, 8th order in space

- Seismic processing: propagate pressure wave
- Major component: 3DFD computation (Laplacian discretization)
- Data requires padding to avoid out of bounds accesses
 - Minimum: pad by 4 elements on all 6 sides of data
 - Minimum padding causes offset access pattern
- Diagnosing:
 - Transactions per request:
 - Ideal ratio: 1 (single-precision float code)
 - Loads: 1.78
 - Stores: 2.00
 - L1 hit rate: 15.6%

Case Study 2: Cause

- Looking at the 2 fastest-varying dimensions, 512x512x512 problem
 - Computational domain: 512 cells per row
 - R=4 (stencil "radius")

- For perfect coalescing we need:
 - Row size, after padding, to be a multiple of 128 bytes (32 floats)
 - The first non-padding element to be at a multiple of 128 bytes

Case Study 2: Remedy

- Looking at the 2 fastest-varying dimensions, 512x512x512 problem
 - Computational domain: 512 cells per row
 - R=4 (stencil "radius")

Case Study 2: Result

• Programming effort: 3 lines

- 2 additional lines for allocation
- 1 additional line to adjust the pointer to skip past the leadpadding before passing it to the function
- No changes to the function code

• Performance impact:

- Kepler: 1.20x speedup
- Fermi: 1.18x speedup
- 1.0 transactions per request, for both loads and stores

Pattern Category 2: Large Inter-thread Stride

• Cause:

- Successive threads access words at regular distance, distance greater than one word
 - GPU access words: 1, 2, 4, 8, 16 bytes
- Example cases:
 - Data transpose (warp accessing a column in a row-major data structure)
 - Cases where some data is accessed in transposed fashion, other isn't
- Issues:
 - Wasted bandwidth: moves more bytes than needed
 - Substantially increased latency:
 - If a warp address pattern requires N transactions, the instruction is issued N times
- Symptoms:
 - Transactions per request much greater than ideal
- Remedies:
 - Full: change data layout, stage accesses via SMEM
 - Partial: non-caching loads, read-only loads

Case Study 3: Matrix Transpose

- Double-precision elements
- Row-major storage order
- Naïve implementation:
 - Square threadblocks
 - Each thread:
 - Computes its global x and y coordinates
 - Reads from (x,y), writes to (y,x)

Case Study 3: Diagnosis

• Double-precision elements:

- ideally 2.0 transactions per request

Measured values:

- 2.0 lines per load
- 32 transactions per store
- 75% of DRAM bandwidth
- Conclusions:
 - Performance is bandwidth-limited (75% of theory is very good)
 - Much of the bandwidth is wasted due to store pattern
 - Number of store transactions is 16x higher than ideal

Case Study 3: Cause and Remedy

• Cause:

- Due to nature of operation, one of the accesses (read or write) will be at large strides
 - 32 doubles (256 bytes) in this case
 - Thus, bandwidth will be wasted as only a portion of a transaction is used by the application

Remedy

- Stage accesses through shared memory
- A threadblock:
 - Reads a tile from GMEM to SMEM
 - Transposes the tile in SMEM
 - Write a tile, in a coalesced way, from SMEM to GMEM

Case Study 3: Result

- Naïve implementation:
 - 16.7 ms
 - 32 transactions per store
- Optimized implementation:
 - 11.2 ms (1.5x speedup)
 - 2 transactions per store

Pattern Category 3: Large Contiguous Region Per Thread

- Cause:
 - Each thread accesses its own contiguous region of memory, region is several words in size
 - Example: Array of Structures (AoS) data layout
- Issues:
 - Wasted bandwidth:
 - Reads: same bytes are fetched redundantly (lines get evicted before all bytes are consumed)
 - Stores: wasted bandwidth since stores happen at 32-byte granularity
 - Substantially increased latency:
 - If a warp address pattern requires N transactions, the instruction is issued N times
- Symptoms:
 - Transactions per request much greater than ideal ratio
 - For loads, not a problem if L1 misses per request are equal to the ideal ratio
 - Usually medium to high L1 hit rate
- Remedies:
 - Full:
 - Change data layout (Structure of Arrays instead of AoS)
 - Process the region with several threads to get coalescing
 - Partial: read-only loads

Case Study 4: SoA vs AoS

Global shallow water model

- Stencil computation for wave dynamics (height, velocity)
- Double-precision code
- Initial implementation:
 - Array of Structures data layout
 - A structure has 20 fp64 members (160 bytes)
 - Each thread is responsible for one structure:
 - Stencil computation:
 - Read own structure members
 - Read neighbors' structure members
 - Write output structure

- Double-precision code, so ideal ratio is 2.0 for loads and stores
- Measured values:
 - 24.5 L1 lines per load
 - 73% L1 hit rate
 - 6.0 transactions per store
 - Throughputs:
 - 23% of DRAM bandwidth
 - 13% of instruction bandwidth
- Conclusion
 - Performance is latency-limited
 - Both throughputs are small percentages of theory
 - Recall that high reissues of memory instructions increase latency
 - Address pattern wastes bandwidth:
 - transactions per request much higher than 2.0
 - Even with 73% hit rate, (1-0.73) * 24.5 = ~6.6 L1 load misses per request

Case Study 4: Cause

• Array of Structures data layout:

- Threads in a warp access at 160 byte (20 fp64) stride
 - Each thread consumes more than 1 line, but line gets evicted before full use
- Even after L1 hits, we're reading ~3x more bytes than needed
- Load and store replays (due to multiple transactions per warp) increase latency, latency is the limiting factor for this code

• Two possible solutions:

- Try reading through read-only cache
 - This is just a partial remedy:
 - Helps reduce wasted bandwidth (smaller granularity for access and caching)
 - Improves, but doesn't resolve the latency increase due to replays
- Rearrange the data from Array of Structures to Structure of Arrays
 - The ultimate solution, addresses both latency and wasted bandwidth

Case Study 4: Results

• Original code (Array of Structures):

- Time: 22.8 ms
- 24.5 transactions per load, 6 transactions per store
- Code using read-only loads:
 - Time: 15.7 ms (1.45x speedup over original)
- Code with Structure of Arrays data layout:
 - Time: 9.3 ms (2.45x speedup over original)
 - Successive threads access successive words
 - 3 transactions per load request
 - Due to offset halo reads: addressed with non-caching loads: 8.9ms (2.56x speedup)
 - 2 transactions per store request

Case Study 5: Assigning More Threads per Region

• CAM HOMME

- Climate modeling code, double precision
- Spectral element code, 4x4x26 elements
- CUDA Fortran (x26 is the slowest varying dimension)
- Limiter2d_zero function:
 - For each element:
 - Read 4x4x26 values from GMEM
 - For each of 26 levels:
 - » Compute the sum over 4x4 values
 - » Adjust the values based on the sum
 - » Write adjusted values to GMEM

Initial implementation:

One thread for each of 26 levels

Case Study 5: Diagnosing

- Ideal transactions per request: 2.0 for loads and stores
- Measured values:
 - Loads: 31.4
 - Stores: 31.3
 - L1 hit rate: 54.9%
 - Achieved throughputs:
 - 21% of DRAM bandwidth
 - 17% of instruction bandwidth
- Conclusions:
 - Performance is latency-limited
 - Address pattern wastes bandwidth:
 - Transactions per request much higher than 2.0
 - Even with 54.9% hit rate, (1-0.549) * 31.4 = ~14.2 L1 load misses per request

Case Study 5: Cause and Remedy

• Each thread loops through 16 consecutive doubles

- Each thread accesses a contiguous region of 128 bytes
 - Threads in a warp address at 128-byte stride
- Each memory instruction has 32 transactions:
 - Dramatic increase in latency: each instruction is issued 32 times
- Bandwidth is wasted since lines are fetched redundantly
- Remedy:
 - Assign 16 threads per 4x4 level, as opposed to 1
 - No need to rearrange the data

Case Study 5: Results

• Initial implementation:

- Time: 2.30 ms
- ~32 transactions per request, both loads and stores
- Achieves 21% of DRAM bandwidth
- Optimized implementation:
 - Time: 0.52 ms (4.45x speedup)
 - -~2 transactions per request, both loads and stores
 - Achieves 63% of DRAM bandwidth

Pattern Category 4: Irregular Address

- Cause:
 - Threads in a warp access many lines, strides are irregular
- Issues:
 - Wasted bandwidth: not all the bytes in the lines are used by application

- Partial: non-caching loads, read-only loads

Pattern Category 4: Irregular Address

• Cause:

- Threads in a warp access many lines, strides are irregular
- Issues:
 - Wasted bandwidth: not all the bytes in the lines are used by application
 - Increased latency: if N transactions are needed per instruction, instruction is issued N times

• Symptoms:

- Transactions per request much higher than ideal
- Low to none L1 hits

• Remedies:

Partial: non-caching loads, read-only loads

Summary of Pattern Categories and their Symptoms

Address Pattern Category	Transactions per request	L1 hit rate
Offset	1.5 – 2.0x the ideal	Low – 50%
Large stride between threads	Medium-high	Low or none
Contiguous per thread	High	Medium-high
Scattered-irregular	High	Low or none
Summary of Pattern Categories and their Symptoms

Address Pattern Category	Transactions per request	L1 hit rate	
Offset	1.5 – 2.0x the ideal	Low – 50%	
Large stride between threads	Medium-high	Low or none	
Contiguous per thread	High	Medium-high	
Scattered-irregular	High	Low or none	

The difference between these patterns is regular (large-stride) vs irregular scatter

Having Sufficient Concurrent Accesses

 In order to saturate memory bandwidth, SM must issue enough independent memory requests

Elements per Thread and Performance

- Experiment: each warp has 2 concurrent requests (memcopy, one word per thread)
 - 4B word request: 1 line
 - 8B word request: 2 lines
 - 16B word request: 4 lines

- To achieve the same throughput at lower occupancy:
 - Need more independent requests per warp
- To achieve the same throughput with smaller words:
 - Need more independent requests per warp

Optimizing Access Concurrency

- Have enough concurrent accesses to saturate the bus
 - Little's law: need (mem_latency)x(bandwidth) bytes
- Ways to increase concurrent accesses:
 - Increase occupancy (run more warps concurrently)
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - If occupancy is limited by registers per thread:
 - Reduce register count (-maxrregcount option, or __launch_bounds__)
 - Modify code to process several elements per thread
 - Doubling elements per thread doubles independent accesses per thread

Optimizations When Addresses Are Coalesced

• When looking for more performance and code:

- Is memory bandwidth limited
- Achieves high percentage of bandwidth theory
- Addresses are coalesced (ideal transaction per request ratio)

Consider compression

- GPUs provide instructions for converting between fp16, fp32, and fp64 representations:
 - A single instruction, implemented in hw (__float2half(), ...)
- If data has few distinct values, consider lookup tables
 - Store indices into the table
 - Small enough tables will likely survive in caches if used often enough

Summary: GMEM Optimization

• Strive for perfect address coalescing per warp

- Align starting address (may require padding)
- A warp will ideally access within a contiguous region
- Avoid scattered address patterns or patterns with large strides between threads
- Analyze and optimize:
 - Use profiling tools (included with CUDA toolkit download)
 - Compare the transactions per request to the ideal ratio
 - Choose appropriate data layout
 - If needed, try read-only, non-caching loads
- Have enough concurrent accesses to saturate the bus
 - Launch enough threads to maximize throughput
 - Latency is hidden by switching threads (warps)
 - If needed, process several elements per thread
 - More concurrent loads/stores

SHARED MEMORY

Shared Memory

- On-chip (on each SM) memory
- Comparing SMEM to GMEM:
 - Order of magnitude (20-30x) lower latency
 - Order of magnitude (~10x) higher bandwidth
 - Accessed at bank-width granularity
 - Fermi: 4 bytes
 - Kepler: 8 bytes
 - For comparison: GMEM access granularity is either 32 or 128 bytes
- SMEM instruction operation:
 - 32 threads in a warp provide addresses
 - Determine into which 8-byte words (4-byte for Fermi) addresses fall
 - Fetch the words, distribute the requested bytes among the threads
 - Multi-cast capable
 - Bank conflicts cause serialization

Kepler Shared Memory Banking

• 32 banks, 8 bytes wide

- Bandwidth: 8 bytes per bank per clock per SM (256 bytes per clk per SM)
- 2x the bandwidth compared to Fermi

• Two modes:

- 4-byte access (default):
 - Maintains Fermi bank-conflict behavior exactly
 - Provides 8-byte bandwidth for certain access patterns

8-byte access:

- Some access patterns with Fermi-specific padding may incur bank conflicts
- Provides 8-byte bandwidth for all patterns (assuming 8-byte words)
- Selected with cudaDeviceSetSharedMemConfig() function arguments:
 - cudaSharedMemBankSizeFourByte
 - cudaSharedMemBankSizeEightByte

Kepler 8-byte Bank Mode

• Mapping addresses to banks:

- Successive 8-byte words go to successive banks
- Bank index:
 - (8B word index) mod 32
 - (4B word index) mod (32*2)
 - (byte address) mod (32*8)
- Given the 8 least-significant address bits: ...BBBBBxxx
 - xxx selects the byte within an 8-byte word
 - BBBBB selects the bank
 - Higher bits select a "column" within a bank

Kepler 4-byte Bank Mode

- Understanding this mapping details matters <u>only if you're trying</u> to get 8-byte throughput in 4-byte mode
 - For all else just think that you have 32 banks, 4-bytes wide
- Mapping addresses to banks:
 - Successive 4-byte words go to successive banks
 - We have to choose between two 4-byte "half-words" for each bank
 - "First" 32 4-byte words go to lower half-words
 - "Next" 32 4-byte words go to upper half-words
 - Given the 8 least-significant address bits: ... HBBBBBXX
 - xx selects the byte with a 4-byte word
 - BBBBB selects the bank
 - H selects the half-word within the bank
 - Higher bits select the "column" within a bank

Kepler 4-byte Bank Mode

- To visualize, let's pretend we have 4 banks, not 32 (easier to draw)
 - Looking at 5 least-significant address bits: ... HBBxx

SMEM:

Comparing Bank Modes

- To visualize, let's pretend we have 4 banks, not 32 (easier to draw)
 - Looking at 5 least-significant address bits: ... HBBxx

Case Study 6: Kepler 8-byte SMEM Access

TTI Reverse Time Migration

- A seismic processing code, 3DFD
 - fundamental component is applying a 3D stencil to 2 wavefields to compute discrete derivatives
- Natural to interleave the wavefields in shared memory:
 - store as a float2 structure
 - Also a slight benefit to global memory performance, on both Fermi and Kepler

Impact on performance from enabling 8-byte mode:

- More SMEM operations as order in space increases
- 8th order in space:
 - 2 kernels, only one uses shared memory
 - 1.14x full code speedup (1.18x kernel speedup)
- 16th order in space:
 - 3 kernels, only one uses shared memory
 - 1.20x full code speedup (1.29x kernel speedup)

Shared Memory Bank Conflicts

• A bank conflict occurs when:

- 2 or more threads in a warp access different words in the same bank
 - Think: 2 or more threads access different "rows" in the same bank
- N-way bank conflict: N threads in a warp conflict
 - Instruction gets issued N times: increases latency
- Note there is no bank conflict if:
 - Several threads access the same word
 - Several threads access different bytes of the same word

Addresses from a warp: no bank conflicts

One address access per bank

Addresses from a warp: no bank conflicts

One address access per bank

Addresses from a warp: no bank conflicts

Multiple addresses per bank, but within the same word

Addresses from a warp: 2-way bank conflict

2 accesses per bank, fall in two different words

Addresses from a warp: 3-way bank conflict

4 accesses per bank, fall in 3 different words

Diagnosing Bank Conflicts

• Profiler counters:

- Number of instructions executed, does not include replays:
 - shared_load, shared_store
- Number of replays (number of instruction issues due to bank conflicts)
 - l1_shared_bank_conflict
- Analysis:
 - Number of replays per instruction
 - l1_shared_bank_conflict / (shared_load + shared_store)
 - Replays are potentially a concern because:
 - Replays add latency
 - Compete for issue cycles with other SMEM and GMEM operations
 - Except for read-only loads, which go to different hardware

• Remedy:

Usually padding SMEM data structures resolves/reduces bank conflicts

Case Study 7: Matrix Transpose

• Staged via SMEM to coalesce GMEM addresses

- 32x32 threadblock, double-precision values
- 32x32 array in shared memory
- Initial implementation:
 - A warp writes a row of values to SMEM (read from GMEM)
 - A warp reads a column of values from SMEM (to be written to GMEM)

Diagnosing:

- 15 replays per shared memory instruction
- Replays make up 56% of instructions issued
 - Ratio of l1_shared_bank_conflict to inst_issued
- Code achieves only 45% of DRAM bandwidth
- Conclusion: bank conflicts add latency and prevent GMEM instructions from executing efficiently

Cast Study 7: Remedy and Results

• Remedy:

- Simply pad each row of SMEM array with an extra element
 - 32x33 array, as opposed to 32x32
 - Effort: 1 character, literally
- Warp access to SMEM
 - Writes still have no bank conflicts:
 - threads access successive elements
 - Reads also have no bank conflicts:
 - Stride between threads is 17 8-byte words, thus each goes to a different bank

• Results:

- Initial: 22.6 ms (worse than naïve with scattered GMEM access)
- Optimized: 11.2 ms (~2x speedup)
 - 0 bank conflicts, 65% of DRAM theory

Summary: Shared Memory

• Shared memory is a tremendous resource

- Very high bandwidth (terabytes per second)
- 20-30x lower latency than accessing GMEM
- Data is programmer-managed, no evictions by hardware

• Performance issues to look out for:

- Bank conflicts add latency and reduce throughput
- Many-way bank conflicts can be very expensive
 - Replay latency adds up
 - However, few code patterns have high conflicts, padding is a very simple and effective solution
- Kepler has 2x SMEM throughput compared to Fermi:
 - SMEM throughput is doubled by increasing bank width to 8 bytes
 - Kernels with 8-byte words will benefit without changing kernel code
 - Put GPU into 8-byte bank mode with cudaSetSharedMemConfig() call
 - Kernels with smaller words will benefit if words are grouped into 8-byte structures

ARITHMETIC OPTIMIZATIONS

Instructions are issued/executed per warp

- Warp = 32 consecutive threads
 - Think of it as a "vector" of 32 threads
 - The same instruction is issued to the entire warp

Scheduling

GPU TEC

- Warps are scheduled at run-time
- Hardware picks from warps that have an instruction ready to execute
 - Ready = all arguments are ready
- Instruction latency is hidden by executing other warps

Control Flow

- Single-Instruction Multiple-Threads (SIMT) model
 - A single instruction is issued for a warp (thread-vector) at a time
- SIMT compared to SIMD:
 - SIMD requires vector code in each thread
 - SIMT allows you to write scalar code per thread
 - Vectorization is handled by hardware
- Note:

IIdé

- All contemporary processors (CPUs and GPUs) are built by aggregating vector processing units
- Vectorization is needed to get performance on CPUs and GPUs

VOLOGY LEC 202 GPU

instructions

Control Flow

instructions / time

Execution within warps is coherent

Execution diverges within a warp

62

63

Possible Performance Limiting Factors

Raw instruction throughput

- Know the kernel instruction mix
- fp32, fp64, int, mem, transcendentals, etc. have different throughputs
 - Refer to the CUDA Programming Guide / Best Practices Guide
 - Can examine assembly: use cuobjdump tool provided with CUDA toolkit
- A lot of divergence can "waste" instructions

Instruction serialization

- Occurs when threads in a warp issue the same instruction in sequence
 - As opposed to the entire warp issuing the instruction at once
 - Think of it as "replaying" the same instruction for different threads in a warp
- Mostly:
 - Shared memory bank conflicts
 - Memory accesses that result in multiple transactions (scattered address patterns)

Instruction Throughput: Analysis

Compare achieved instruction throughput to HW capabilities

- Profiler reports achieved throughput as IPC (instructions per clock)
- Peak instruction throughput is documented in the Programming Guide
 - Profiler also provides peak fp32 throughput for reference (doesn't take your instruction mix into consideration)

Check for serialization

- Number of replays due to serialization: instructions_issued instructions_executed
- Profiler reports:
 - % of serialization metric (ratio or replays to instructions issued)
 - Kepler: counts replays due to various memory access instructions
- A concern if: code is instruction or latency-limited, replay percentage is high
- Warp divergence
 - Profiler counters: divergent_branch, branch
 - Compare the two to see what percentage diverges
 - However, this only counts the branches, not the rest of serialized instructions

Instruction Throughput: Optimization

- Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
 - Available for a number of math.h functions
 - 2-3 bits lower precision, much higher throughput
 - Refer to the CUDA Programming Guide for details
 - Often a single HW instruction, whereas a non-intrinsic is a SW sequence
- Additional compiler flags that also help performance:
 - -ftz=true : flush denormals to 0
 - -prec-div=false : faster fp division instruction sequence (some precision loss)
 - -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)
- Make sure you do fp64 arithmetic only where you mean it:
 - fp64 throughput is lower than fp32
 - fp literals without an "f" suffix (34.7) are interpreted as fp64 per C standard

Instruction Throughput: Summary

• Analyze:

- Check achieved instruction throughput
- Compare to HW peak (but keep instruction mix in mind)
- Check percentage of instructions due to serialization

• Optimizations:

- Intrinsics, compiler options for expensive operations
- Group threads that are likely to follow same execution path (minimize warp divergence)
- Minimize memory access replays (SMEM and GMEM)

OPTIMIZING FOR KEPLER

Kepler Architecture Family

• Two architectures in the family:

- GK104 (Tesla K10, GeForce: GTX690, GTX680, GTX670, ...)
 - Note that K10 is 2 GK104 chips on a single board
- GK110 (Tesla K20, ...)

GK110 has a number of features not in GK104:

- Dynamic parallelism, HyperQ
- More registers per thread, more fp64 throughput
- For full details refer to:
 - Kepler Whitepaper
 - GTC12 Session 0642: "Inside Kepler"
Good News About Kepler Optimization

- The same optimization fundamentals that applied to Fermi, apply to Kepler
 - There are no new fundamentals
- Main optimization considerations:
 - Expose sufficient parallelism
 - SM is more powerful, so will need more work
 - Coalesce memory access
 - Exactly the same as on Fermi
 - Have coherent control flow within warps
 - Exactly the same as on Fermi

Level of Parallelism

• Parallelism for memory is most important

- Most codes don't achieve peak fp throughput because:
 - Stalls waiting on memory (latency not completely hidden)
 - Execution of non-fp instructions (indexing, control-flow, etc.)
 - NOT because of lack of independent fp math
- GK104:
 - Compared to Fermi, needs ~2x concurrent accesses per SM to saturate memory bandwidth
 - Memory bandwidth comparable to Fermi
 - 8 SMs while Fermi had 16 SMs
 - Doesn't necessarily need twice the occupancy of your Fermi code
 - If Fermi code exposed more than sufficient parallelism, increase is less than 2x

Kepler SM Improvements for Occupancy

• 2x registers

- Both GK104 and GK110
- 64K registers (Fermi had 32K)
- Code where occupancy is limited by registers will readily achieve higher occupancy (run more concurrent warps)

• 2x threadblocks

- Both GK104 and GK110
- Up to 16 threadblocks (Fermi had 8)
- 1.33x more threads
 - Both GK104 and GK110
 - Up to 2048 threads (Fermi had 1536)

Increased Shared Memory Bandwidth

- Both GK104 and GK110
- To benefit, code must access 8-byte words
 - No changes for double-precision codes
 - Single-precision or integer codes should group accesses into float2, int2 strutures to get the benefit
- Refer to Case Study 6 for a usecase sample

SM Improvements Specific to GK110

• More registers per thread

- A thread can use up to 255 registers (Fermi had 63)
- Improves performance for some codes that spilled a lot of registers on Fermi (or GK104)
 - Note that more registers per thread still has to be weighed against lower occupancy
- Ability to use read-only cache for accessing global memory
 - Improves performance for some codes with scattered access patterns, lowers the overhead due to replays
- Warp-shuffle instruction (tool for ninjas)
 - Enables threads in the same warp to exchange values without going through shared memory

Case Study 8: More Registers Per Thread

• TTI RTM code:

- Same as used in Case Study 6
- Can be implemented in 2 or 3 passes
 - <u>http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels</u>
 - 2-pass approach has fewer accesses to memory, but consumes many registers
 - Additional benefit: requires less storage than 3-pass
 - 3-pass approach has more accesses to memory, but consumes fewer registers
 - Higher order in space -> more registers needed

• 16th order in space:

- Fermi: 3-pass is faster than 2-pass
 - 2-pass spills too many registers, which causes extra memory traffic
- GK110: 2-pass is 1.15x faster than 3-pass
 - The "large" kernel consumes 96 registers per thread, doesn't spill
 - Can probably be improved further: literally 5 minutes were spent on optimization

Considerations for Dynamic Parallelism

- GPU threads are able to launch work for GPU
 - GK110-specific feature
- Same considerations as for launches from CPU
 - Same exact considerations for exposing sufficient parallelism as for "traditional" launches (CPU launches work for GPU)
 - A single launch doesn't have to saturate the GPU:
 - GPU can execute up to 32 different kernel launches concurrently

In Conclusion

- When programming and optimizing think about:
 - Exposing sufficient parallelism
 - Coalescing memory accesses
 - Having coherent control flow within warps
- Use profiling tools when analyzing performance
 - Determine performance limiters first
 - Diagnose memory access patterns

ICÓ

Questions