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Goals of This Talk 
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• Give insight into how hardware operates 
– Fermi and Kepler 

• Connect hardware operation to performance 
• Provide guidelines for diagnosing and optimizing 

performance limiters 
– Illustrate the use with brief case studies 

• some Fermi, some Kepler 

• Quick review of things to keep in mind when 
transitioning from Fermi to Kepler 



Outline 

• Requirements for GPU performance 

• Exposing Sufficient parallelism 

• Optimizing GPU Memory Access 

– Global memory 

– Shared memory 

• Optimizing GPU instruction execution 

• Review of Kepler considerations 
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Additional Resources 
• More information on topics for which we don’t have time in this session 
• Kepler architecture: 

– GTC12 Session S0642: Inside Kepler 
– Kepler whitepapers (http://www.nvidia.com/object/nvidia-kepler.html) 

• Assessing performance limiters: 
– GTC10 Session 2012: Analysis-driven Optimization (slides 5-19): 

• http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf 

• Profiling tools: 
– GTC12 sessions: 

• S0419: Optimizing Application Performance with CUDA Performance Tools 
• S0420: Nsight IDE for Linux and Mac 
• ... 

– CUPTI documentation (describes all the profiler counters) 
• Included in every CUDA toolkit (/cuda/extras/cupti/doc/Cupti_Users_Guide.pdf 

• Register spilling: 
– Webinar: 

• Slides: http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf 
• Video: http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4 

• GPU computing webinars in general: 
– http://developer.nvidia.com/gpu-computing-webinars 
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Determining Performance Limiter for a Kernel 

• Kernel performance is limited by one of: 
– Memory bandwidth 
– Instruction bandwidth 
– Latency 

• Usually the culprit when neither memory nor instruction throughput is a high-
enough percentage of theoretical bandwidth 

• Determining which limiter is the most relevant for your kernel 
– Not really covered in this presentation due to time 
– Covered in more detail in session 2012 of GTC2010: 

• Slides: 5-19, 45-49 
• Link: http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf 
• Video: http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html 
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Topics For Ninjas 

• Topics relevant to 1% (or less) of codes and developers 
– So, if you’re not trying to squeeze out the last few % of 

performance, you can ignore these 

• Indicated with the following logo: 
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Main Requirements for GPU Performance 

• Expose sufficient parallelism 

• Coalesce memory access 

• Have coherent execution within warp 
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EXPOSING SUFFICIENT PARALLELISM 
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Kepler: Level of Parallelism Needed 

• To saturate instruction bandwidth: 

– Fp32 math:  ~1.7K independent instructions per SM 

– Lower for other, lower-throughput instructions 

– Keep in mind that Kepler SM can track up to 2048 threads 

• To saturate memory bandwidth:  

– 100+ independent lines per SM 
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Memory Parallelism 

• Achieved Kepler memory thoughput 
– As a function of the number of independent requests per SM 
– Request: 128-byte line 
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Exposing Sufficient Parallelism 

• What hardware ultimately needs: 
– Arithmetic pipes:  

• sufficient number of independent instructions 
– accommodates multi-issue and latency hiding 

– Memory system:  
• sufficient requests in flight to saturate bandwidth 

• Two ways to increase parallelism: 
– More independent work within a thread (warp) 

• ILP for math, independent accesses for memory 

– More concurrent threads (warps) 
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Occupancy 

• Occupancy: number of concurrent threads per SM 
– Expressed as either: 

• the number of threads (or warps),  
• percentage of maximum threads 

• Determined by several factors  
– (refer to Occupancy Calculator, CUDA Programming Guide for full details) 
– Registers per thread 

• SM registers are partitioned among the threads 

– Shared memory per threadblock 
• SM shared memory is partitioned among the blocks 

– Threads per threadblock 
• Threads are allocated at threadblock granularity 
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Kepler SM resources 
– 64K 32-bit registers 
– Up to 48 KB of shared memory 
– Up to 2048 concurrent threads 
– Up to 16 concurrent threadblocks 

 



Occupancy and Performance 

• Note that 100% occupancy isn’t needed to reach maximum 
performace 
– Once the “needed” occupancy is reached, further increases won’t 

improve performance 

• Needed occupancy depends on the code 
– More independent work per thread -> less occupancy is needed 

– Memory-bound codes tend to need more occupancy 
• Higher latency than for arithmetic, need more work to hide it 

– We’ll discuss occupancy for memory- and math-bound codes later 
in the presentation 
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Exposing Parallelism: Grid Configuration 

• Grid: arrangement of threads into threadblocks 

• Two goals: 
– Expose enough parallelism to an SM 

– Balance work across the SMs 

• Several things to consider when launching kernels: 
– Number of threads per threadblock 

– Number of threadblocks 

– Amount of work per threadblock 
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Threadblock Size and Occupancy 

• Threadblock size is a multiple of warp size (32) 
– Even if you request fewer threads, HW rounds up 

• Threadblocks can be too small 
– Kepler SM can run up to 16 threadblocks concurrently 

– SM may reach the block limit before reaching good occupancy 
• Example: 1-warp blocks -> 16 warps per Kepler SM (probably not enough) 

• Threadblocks can be too big 
– Quantization effect:  

• Enough SM resources for more threads, not enough for another large block 

• A threadblock isn’t started until resources are available for all of its threads 
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Threadblock Sizing 

• SM resources: 
– Registers 
– Shared memory 
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Case Study 1: Threadblock Sizing 

• Non-hydrostatic Icosahedral Model (NIM) 
– Global weather simulation code, NOAA 
– vdmintv kernel:  

• 63 registers per thread, 3840 bytes of SMEM per warp 
• At most 12 warps per Fermi SM (limited by SMEM) 

• Initial grid:  32 threads per block, 10,424 blocks 
– Blocks are too small: 

• 8 warps per SM, limited by number of blocks (Fermi’s limit was 8) 
• Code achieves a small percentage (~30%) of both math and memory 

bandwidth 

– Time: 6.89 ms 

© 2012, NVIDIA 17 



Case Study 1: Threadblock Sizing 

• Optimized config: 64 threads per block, 5,212 blocks 

– Occupancy: 12 warps per SM, limited by SMEM 

– Time: 5.68 ms  (1.21x speedup) 

• Further optimization: 

– Reduce SMEM consumption by moving variables to registers 

• 63 registers per thread, 1536 bytes of SMEM per warp 

– Occupancy: 16 warps per SM, limited by registers 

– Time: 3.23 ms (2.13x speedup over original) 
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Waves and Tails 

• Wave of threadblocks 
– A set of threadblocks that run concurrently on GPU 
– Maximum size of the wave is determined by: 

• How many threadblocks can fit on one SM 
– Number of threads per block 
– Resource consumption: registers per thread, SMEM per block 

• Number of SMs 

• Any grid launch will be made up of: 
– Some number of full waves 
– Possibly one tail: wave with fewer than possible blocks 

• Last wave by definition 
• Happens if the grid size is not divisible by wave size 
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Tail Effect 

• Tail underutilizes GPU 
– Impacts performance if tail is a significant portion of time  

• Example: 
– GPU with 8 SMs 
– Code that can run 1 threadblock per SM at a time 

• Wave size = 8 blocks 

– Grid launch: 12 threadblocks 

• 2 waves: 
– 1 full 
– Tail with 4 threadblocks 

• Tail utilizes 50% of GPU, compared to full-wave 
• Overall GPU utilization: 75% of possible 
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Tail Effect 

• A concern only when: 
– Launching few threadblocks (no more than a few waves) 
– Tail effect is negligible when launching 10s of waves 

• If that’s your case, you can ignore the following info 

• Tail effect can occur even with perfectly-sized grids 
– Threadblocks don’t stay in lock-step 

• To combat tail effect: 
– Spread the work of one thread among several threads 

• Increases the number of blocks -> increases the number of waves 

– Spread the threads of one block among several 
• Improves load balancing during the tail 

– Launch independent kernels into different streams 
• Hardware will execute threadblocks from different kernels to fill the GPU 
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Tail Effect: Large vs Small Threadblocks 
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 2 waves of threadblocks 

— Tail is running at 25% of possible 

— Tail is 50% of time 

 Could be improved if the tail work could be 
better balanced across SMs 

 2 waves of threadblocks 

— Tail is running at 75% of possible 

— Tail is 25% of time 

 Tail work is spread across more 
threadblocks, better balanced across SMs 

 Estimated speedup: 1.5x (time reduced by 33%) 
wave 0 wave 1 (tail) 

wave 0 wave 1 (tail) 



Tail Effect: Few vs Many Waves of Blocks 
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SM 

80% of time code runs at 100% of its ability, 20% of time it runs at 50% of ability: 90% of possible 

95% of time code runs at 100% of its ability, 5% of time it runs at 50% of ability: 97.5% of possible 

time 



General Guidelines 

• Threadblock size choice: 
– Start with 128-256 threads per block 

• Adjust up/down by what best matches your function 
• Example: stencil codes prefer larger blocks to minimize halos 

– Multiple of warp size (32 threads) 
– If occupancy is critical to performance: 

• Check that block size isn’t precluding occupancy allowed by register and 
SMEM resources 

• Grid size: 
– 1,000 or more threadblocks 

• 10s of waves of threadblocks: no need to think about tail effect 
• Makes your code ready for several generations of future GPUs 
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GLOBAL MEMORY 
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Kepler Memory Hierarchy 

© 2012, NVIDIA 26 

L2 

Global Memory (DRAM) 

Registers 

L1 

SM-1 

SMEM 
Read 
only 

Registers 

L1 

SM-N 

SMEM 
Read 
only 

Registers 

L1 

SM-0 

SMEM 
Read 
only 



Memory Hierarchy Review 
• Registers 

– Storage local to each threads 
– Compiler-managed 

• Shared memory / L1 
– 64 KB, program-configurable into shared:L1 
– Program-managed 
– Accessible by all threads in the same threadblock 
– Low latency, high bandwidth: 1.5-2 TB/s on Kepler GK104 

• Read-only cache 
– Up to 48 KB per Kepler SM 
– Hardware-managed (also used by texture units) 
– Used for read-only GMEM accesses (not coherent with writes) 

• L2 
– Up to: 512 KB on Kepler GK104, 1.5 MB on Kepler GK110  (768 KB on Fermi) 
– Hardware-managed: all accesses to global memory go through L2, including CPU and peer GPU 

• Global memory 
– Accessible by all threads, host (CPU), other GPUs in the same system 
– Higher latency (400-800 cycles) 
– Tesla K10 bandwidth:  2x160 GB/s (2 chips on a board) 
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Blocking for L1, Read-only, L2 Caches 

• Short answer: DON’T 
• GPU caches are not intended for the same use as CPU caches 

– Smaller size (especially per thread), so not aimed at temporal reuse 
– Intended to smooth out some access patterns, help with spilled 

registers, etc. 

• Usually not worth trying to cache-block like you would on CPU 
– 100s to 1,000s of run-time scheduled threads competing for the cache 
– If it is possible to block for L1 then it’s possible block for SMEM 

• Same size 
• Same or higher bandwidth 
• Guaranteed locality: hw will not evict behind your back 
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L1 Sizing 

• Shared memory and L1 use the same 64KB 
– Program-configurable split: 

• Fermi:  48:16, 16:48 

• Kepler: 48:16, 16:48, 32:32 

– CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig() 

• Large L1 can improve performance when: 
– Spilling registers (more lines in the cache -> fewer evictions) 

– Some offset, small-stride access patterns 

• Large SMEM can improve performance when: 
– Occupancy is limited by SMEM 
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Global Memory Operations 

• Memory operations are executed per warp 
– 32 threads in a warp provide memory addresses 
– Hardware determines into which lines those addresses fall 
 

• Stores: 
– Invalidate L1, go at least to L2, 32-byte granularity 

• Three types of loads: 
– Caching (default) 
– Non-caching 
– Read-only (new option in GK110) 
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Load Operation 

• Caching (default mode) 
– Attempts to hit in L1, then L2, then GMEM 
– Load granularity is 128-byte line 

• Non-caching 
– Compile with –Xptxas –dlcm=cg option to nvcc 
– Attempts to hit in L2, then GMEM 

• Does not hit in L1, invalidates the line if it’s in L1 already 

– Load granularity is 32 bytes 

• Read-only 
– Loads via read-only cache: 

• Attempts to hit in Read-only cache, then L2, then GMEM 

– Load granularity is 32 bytes 
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Read-only Loads 

• Go through the read-only cache 
– Not coherent with writes 
– Thus, addresses must not be written by the same kernel 

• Two ways to enable: 
– Decorating pointer arguments as hints to compiler: 

• Pointer of interest: __restrict__ const 
• All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

– Using __ldg() intrinsic 
• Requires no pointer decoration 

– Requires GK110 hardware 
• On prior hardware you can get similar functionality with textures 
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Read-only Loads 

• Go through the read-only cache 
– Not coherent with writes 
– Thus, addresses must not be written by the same kernel 

• Two ways to enable: 
– Decorating pointer arguments as hints to compiler: 

• Pointer of interest: __restrict__ const 
• All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

– Using __ldg() intrinsic 
• Requires no pointer decoration 

– Requires GK110 hardware 
• On prior hardware you can get similar functionality with textures 
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__global__ void kernel( __restrict__ int *output, 
 __restrict__ const int *input ) 
{ 
     ... 
     output[idx] = ... + input[idx]; 
} 



Read-only Loads 

• Go through the read-only cache 
– Not coherent with writes 
– Thus, addresses must not be written by the same kernel 

• Two ways to enable: 
– Decorating pointer arguments as hints to compiler: 

• Pointer of interest: __restrict__ const 
• All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

– Using __ldg() intrinsic 
• Requires no pointer decoration 

– Requires GK110 hardware 
• On prior hardware you can get similar functionality with textures 
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Load Caching 

• Non-caching loads can improve performance when: 

– Loading scattered words or only part of a warp issues a load 

• Benefit: memory transaction is smaller, so useful payload is a larger 
percentage 

• Loading halos, for example 

– Spilling registers (reduce line fighting with spillage) 

• Read-only loads: 

– Can improve performance for scattered reads 

– Latency is a bit higher than for caching/non-caching loads 
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Caching Load 

• Scenario: 
– Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 1 cache-line 
– Warp needs 128 bytes 
– 128 bytes move across the bus on a miss 
– Bus utilization: 100% 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching/Read-only Load 

• Scenario: 
– Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 4 segments 
– Warp needs 128 bytes 
– 128 bytes move across the bus on a miss 
– Bus utilization: 100% 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

... 
addresses from a warp 

• Scenario: 
– Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 1 cache-line 
– Warp needs 128 bytes 
– 128 bytes move across the bus on a miss 
– Bus utilization: 100% 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching/Read-only Load 

... 
addresses from a warp 

• Scenario: 
– Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 4 segments 
– Warp needs 128 bytes 
– 128 bytes move across the bus on a miss 
– Bus utilization: 100% 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

• Scenario: 
– Warp requests 32 misaligned, consecutive 4-byte words 

• Addresses fall within 2 cache-lines 
– Warp needs 128 bytes 
– 256 bytes move across the bus on misses 
– Bus utilization: 50% 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

... 
addresses from a warp 
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Non-caching/Read-only Load 

• Scenario: 
– Warp requests 32 misaligned, consecutive 4-byte words 

• Addresses fall within at most 5 segments 
– Warp needs 128 bytes 
– At most 160 bytes move across the bus 
– Bus utilization: at least 80% 

• Some misaligned patterns will fall within 4 segments, so 100% utilization 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

... 
addresses from a warp 

• Scenario: 
– All threads in a warp request the same 4-byte word 

• Addresses fall within a single cache-line 
– Warp needs 4 bytes 
– 128 bytes move across the bus on a miss 
– Bus utilization: 3.125% 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching/Read-only Load 

addresses from a warp 

• Scenario: 
– All threads in a warp request the same 4-byte word 

• Addresses fall within a single segment 
– Warp needs 4 bytes 
– 32 bytes move across the bus on a miss 
– Bus utilization: 12.5% 

 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

... 
addresses from a warp 

• Scenario: 
– Warp requests 32 scattered 4-byte words 

• Addresses fall within N cache-lines 
– Warp needs 128 bytes 
– N*128 bytes move across the bus on a miss 
– Bus utilization:  128 / (N*128) 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching/Read-only Load 

addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Scenario: 
– Warp requests 32 scattered 4-byte words 

• Addresses fall within N segments 
– Warp needs 128 bytes 
– N*32 bytes move across the bus on a miss 
– Bus utilization:  128 / (N*32)  (4x higher than caching loads) 

 

... 
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Memory Throughput Analysis 

• Two perspectives on the throughput: 
– Application’s point of view:  

• count only bytes requested by application 

– HW point of view: 
• count all bytes moved by hardware 

• The two views can be different: 
– Memory is accessed at 32 or 128 byte granularity 

• Scattered/offset pattern: application doesn’t use all the hw transaction bytes 

– Broadcast: the same small transaction serves many threads in a warp 
 

• Two aspects to inspect for performance impact: 
– Address pattern 
– Number of concurrent accesses in flight 
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Causes for Suboptimal Memory Performance 

• Suboptimal address patterns 
– Throughput from HW point of view is significantly higher than from app 

point of view 
– Four general categories: 

1) Offset (not line-aligned) warp addresses 
2) Large strides between threads within a warp 
3) Each thread accesses a large contiguous region 
4) Irregular (scattered) addresses 

• Insufficient concurrent accesses 
– Arithmetic intensity is low (code should be bandwidth-bound) 
– Throughput from HW point of view is much lower than theory 

• Say, below 60% 
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Two Ways to Investigate Address Patterns 

• Profiler-computed load and store efficiency 
– Efficiency = bytes requested by the app / bytes transferred 
– Accurate, but will slow down code substantially:  

• Bytes-requested is measured by profiler instrumenting code for some load/store instruction 
• Thus, you may want to run for smaller data set 

• Transactions per request: 
– Fast: requires collecting 5 profiler counters 
– Accurate if all accesses are for the same word-size (4-byte, 8-byte, etc.) 

• Less accurate if a kernel accesses words of varying sizes (still OK if you know statistical distribution) 

– Loads: 
• Make sure to use caching loads for this analysis 
• Compute (l1_global_load_hit+l1_global_load_miss) to gld_request ratio 
• Compare to the ideal ratio: 32 threads/warp * word size in bytes / 128 bytes per line 

– 1.0 for 4-byte words, 2.0 for 8-byte words, 1.5 if 50% accesses are 4-byte and 50% are 8-byte 

– Stores: 
• Compute global_store_transaction to gst_request ratio 
• Compare to the ideal ratio:  32 * word size in bytes / 128 
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Pattern Category 1: Offset Access  

• Cause: 
– Region addressed by a warp is not aligned on cache-line boundary 

• Issue: 
– Wasted bandwidth: only a fraction of some lines is used 
– Some increase in latency 

• Symptom: 
– Transactions per request 1.5-2.0x higher than ideal 
– Likely: moderate to medium L1 hit rate 

• Remedies: 
– Extra padding for data to force alignment 
– Try non-caching loads, read-only loads 

• Reduce overfetched bytes, but don’t fully solve the problem 
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Pattern Category: Offset Access  

• Cause: 
– Region addressed by a warp is not aligned on cache-line boundary 

• Issue: 
– Wasted bandwidth: only a fraction of some lines is used 
– Some increase in latency 

• Symptom: 
– Transactions per request 1.5-2.0x higher than ideal 
– Likely: moderate to medium L1 hit rate 

• Remedy: 
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Pattern Category 1: Offset Access  

• Cause: 
– Region addressed by a warp is not aligned on cache-line boundary 

• Issue: 
– Wasted bandwidth: only a fraction of some lines is used 
– Some increase in latency 

• Symptom: 
– Transactions per request 1.5-2.0x higher than ideal 
– Likely: moderate to medium L1 hit rate 

• Remedies: 
– Full: extra padding for data to force alignment 
– Partial: non-caching loads, read-only loads 

• Reduce overfetched bytes, but don’t fully solve the problem 
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Case Study 2: Offset Address Pattern 

• Isotropic RTM, 8th order in space 
– Seismic processing: propagate pressure wave 
– Major component: 3DFD computation (Laplacian discretization) 

• Data requires padding to avoid out of bounds accesses 
– Minimum: pad by 4 elements on all 6 sides of data 
– Minimum padding causes offset access pattern 

• Diagnosing: 
– Transactions per request: 

• Ideal ratio: 1 (single-precision float code) 
• Loads: 1.78 
• Stores: 2.00 

– L1 hit rate: 15.6% 
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Case Study 2: Cause 

• Looking at the 2 fastest-varying dimensions, 512x512x512 problem 
– Computational domain: 512 cells per row 
– R=4 (stencil “radius”) 
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• For perfect coalescing we need: 
 

– Row size, after padding, to be a 
multiple of 128 bytes (32 floats) 

 

– The first non-padding element to 
be at a multiple of 128 bytes 

520 

Computational domain R R 

idx = 4 

Idx = 524 

Idx = 1044 



Case Study 2: Remedy 
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Computational domain 
Pad = 28 

lead R = 4 

28 

Idx = 1664 

idx = 32 

Idx = 576 

Idx = 1120 

• Looking at the 2 fastest-varying dimensions, 512x512x512 problem 
– Computational domain: 512 cells per row 
– R=4 (stencil “radius”) 



Case Study 2: Result 

• Programming effort: 3 lines 
– 2 additional lines for allocation 

– 1 additional line to adjust the pointer to skip past the lead-
padding before passing it to the function 

– No changes to the function code 

• Performance impact: 
– Kepler: 1.20x speedup 

– Fermi: 1.18x speedup 

– 1.0 transactions per request, for both loads and stores 
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Pattern Category 2: Large Inter-thread Stride 

• Cause: 
– Successive threads access words at regular distance, distance greater than one word 

• GPU access words: 1, 2, 4, 8, 16 bytes 

– Example cases: 
• Data transpose (warp accessing a column in a row-major data structure) 
• Cases where some data is accessed in transposed fashion, other isn’t  

• Issues: 
– Wasted bandwidth: moves more bytes than needed 
– Substantially increased latency: 

• If a warp address pattern requires N transactions, the instruction is issued N times 

• Symptoms: 
– Transactions per request much greater than ideal 

• Remedies: 
– Full: change data layout, stage accesses via SMEM 
– Partial: non-caching loads, read-only loads 
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Case Study 3: Matrix Transpose  

• Double-precision elements 
• Row-major storage order 
• Naïve implementation: 

– Square threadblocks 
– Each thread: 

• Computes its global x and y coordinates 
• Reads from (x,y), writes to (y,x) 
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Case Study 3: Diagnosis 

• Double-precision elements:  
– ideally 2.0 transactions per request 

• Measured values: 
– 2.0 lines per load 
– 32 transactions per store 
– 75% of DRAM bandwidth 

• Conclusions: 
– Performance is bandwidth-limited (75% of theory is very good) 
– Much of the bandwidth is wasted due to store pattern 

• Number of store transactions is 16x higher than ideal 
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Case Study 3: Cause and Remedy 

• Cause: 
– Due to nature of operation, one of the accesses (read or write) will 

be at large strides 
• 32 doubles (256 bytes) in this case 
• Thus, bandwidth will be wasted as only a portion of a transaction is used by 

the application 

• Remedy 
– Stage accesses through shared memory 
– A threadblock: 

• Reads a tile from GMEM to SMEM 
• Transposes the tile in SMEM 
• Write a tile, in a coalesced way, from SMEM to GMEM 
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Case Study 3: Result 

• Naïve implementation: 

– 16.7 ms 

– 32 transactions per store 

• Optimized implementation: 

– 11.2 ms (1.5x speedup) 

– 2 transactions per store 
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Pattern Category 3: Large Contiguous Region Per Thread 

• Cause: 
– Each thread accesses its own contiguous region of memory, region is several words in size 
– Example: Array of Structures (AoS) data layout 

• Issues: 
– Wasted bandwidth: 

• Reads: same bytes are fetched redundantly  (lines get evicted before all bytes are consumed) 
• Stores: wasted bandwidth since stores happen at 32-byte granularity 

– Substantially increased latency:  
• If a warp address pattern requires N transactions, the instruction is issued N times 

• Symptoms: 
– Transactions per request much greater than ideal ratio 

• For loads, not a problem if L1 misses per request are equal to the ideal ratio 

– Usually medium to high L1 hit rate 

• Remedies: 
– Full: 

• Change data layout (Structure of Arrays instead of AoS) 
• Process the region with several threads to get coalescing 

– Partial: read-only loads 
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Case Study 4: SoA vs AoS 

• Global shallow water model 
– Stencil computation for wave dynamics (height, velocity) 
– Double-precision code 

• Initial implementation: 
– Array of Structures data layout 

• A structure has 20 fp64 members (160 bytes) 

– Each thread is responsible for one structure: 
• Stencil computation: 

– Read own structure members 
– Read neighbors’ structure members 

• Write output structure 
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Case Study 4: Diagnosing 

• Double-precision code, so ideal ratio is 2.0 for loads and stores 
• Measured values: 

– 24.5 L1 lines per load 
– 73% L1 hit rate 
– 6.0 transactions per store 
– Throughputs: 

• 23% of DRAM bandwidth 
• 13% of instruction bandwidth 

• Conclusion 
– Performance is latency-limited 

• Both throughputs are small percentages of theory 
• Recall that high reissues of memory instructions increase latency 

– Address pattern wastes bandwidth:  
• transactions per request much higher than 2.0 
• Even with 73% hit rate, (1-0.73) * 24.5 = ~6.6 L1 load misses per request 
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Case Study 4: Cause 

• Array of Structures data layout: 
– Threads in a warp access at 160 byte (20 fp64) stride 

• Each thread consumes more than 1 line, but line gets evicted before full use 

– Even after L1 hits, we’re reading ~3x more bytes than needed 
– Load and store replays (due to multiple transactions per warp) 

increase latency, latency is the limiting factor for this code 

• Two possible solutions: 
– Try reading through read-only cache 

• This is just a partial  remedy: 
– Helps reduce wasted bandwidth  (smaller granularity for access and caching) 
– Improves, but doesn’t resolve the latency increase due to replays 

– Rearrange the data from Array of Structures to Structure of Arrays 
• The ultimate solution, addresses both latency and wasted bandwidth 
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Case Study 4: Results 

• Original code (Array of Structures): 
– Time: 22.8 ms 
– 24.5 transactions per load, 6 transactions per store 

• Code using read-only loads: 
– Time: 15.7 ms (1.45x speedup over original) 

• Code with Structure of Arrays data layout: 
– Time: 9.3 ms (2.45x speedup over original) 
– Successive threads access successive words 

• 3 transactions per load request 
– Due to offset halo reads: addressed with non-caching loads: 8.9ms (2.56x speedup) 

• 2 transactions per store request 
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Case Study 5: Assigning More Threads per Region 

• CAM HOMME 
– Climate modeling code, double precision 
– Spectral element code, 4x4x26 elements 
– CUDA Fortran (x26 is the slowest varying dimension) 
– Limiter2d_zero function: 

• For each element: 
– Read 4x4x26 values from GMEM 
– For each of 26 levels: 

» Compute the sum over 4x4 values 
» Adjust the values based on the sum 
» Write adjusted values to GMEM 

• Initial implementation: 
– One thread for each of 26 levels 
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Case Study 5: Diagnosing 

• Ideal transactions per request: 2.0 for loads and stores 
• Measured values: 

– Loads: 31.4 
– Stores: 31.3 
– L1 hit rate: 54.9% 
– Achieved throughputs: 

• 21% of DRAM bandwidth 
• 17% of instruction bandwidth 

• Conclusions: 
– Performance is latency-limited 
– Address pattern wastes bandwidth:  

• Transactions per request much higher than 2.0 
• Even with 54.9% hit rate, (1-0.549) * 31.4 = ~14.2 L1 load misses per request 
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Case Study 5: Cause and Remedy 

• Each thread loops through 16 consecutive doubles 
– Each thread accesses a contiguous region of 128 bytes 

• Threads in a warp address at 128-byte stride 

– Each memory instruction has 32 transactions: 
• Dramatic increase in latency: each instruction is issued 32 times 

– Bandwidth is wasted since lines are fetched redundantly 

• Remedy: 
– Assign 16 threads per 4x4 level, as opposed to 1 

– No need to rearrange the data 
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Case Study 5: Results 

• Initial implementation: 
– Time: 2.30 ms 

– ~32 transactions per request, both loads and stores 

– Achieves 21% of DRAM bandwidth 

• Optimized implementation: 
– Time: 0.52 ms (4.45x speedup) 

– ~2 transactions per request, both loads and stores 

– Achieves 63% of DRAM bandwidth 
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Pattern Category 4: Irregular Address 

• Cause: 
– Threads in a warp access many lines, strides are irregular 

• Issues: 
– Wasted bandwidth: not all the bytes in the lines are used by application 
– Increased latency: if N transactions are needed per instruction, 

instruction is issued N times 

• Symptoms: 
– Transactions per request much higher than ideal 
– Low to none L1 hits 

• Remedies: 
– Partial: non-caching loads, read-only loads 
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Pattern Category 4: Irregular Address 

• Cause: 
– Threads in a warp access many lines, strides are irregular 

• Issues: 
– Wasted bandwidth: not all the bytes in the lines are used by application 
– Increased latency: if N transactions are needed per instruction, 

instruction is issued N times 

• Symptoms: 
– Transactions per request much higher than ideal 
– Low to none L1 hits 

• Remedies: 
– Partial: non-caching loads, read-only loads 
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Summary of Pattern Categories and their Symptoms 
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Address Pattern Category Transactions per request L1 hit rate 

Offset 1.5 – 2.0x the ideal Low – 50% 

Large stride between threads Medium-high  Low or none 

Contiguous per thread High Medium-high 

Scattered-irregular High Low or none 



Summary of Pattern Categories and their Symptoms 
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Address Pattern Category Transactions per request L1 hit rate 

Offset 1.5 – 2.0x the ideal Low – 50% 

Large stride between threads Medium-high  Low or none 

Contiguous per thread High Medium-high 

Scattered-irregular High Low or none 

The difference between these patterns is regular (large-stride) vs irregular scatter 



Having Sufficient Concurrent Accesses 

• In order to saturate memory bandwidth, SM must 
issue enough independent memory requests 
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Elements per Thread and Performance 

• Experiment: each warp has 2 concurrent requests (memcopy, one word per thread) 
–   4B word request: 1 line 
–   8B word request: 2 lines 
– 16B word request: 4 lines 

75 
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• To achieve the same 
throughput at lower 
occupancy: 
– Need more independent 

requests per warp 
 

• To achieve the same 
throughput with smaller 
words: 
– Need more independent 

requests per warp 
 



Optimizing Access Concurrency 

• Have enough concurrent accesses to saturate the bus 
– Little’s law: need (mem_latency)x(bandwidth) bytes 

 

• Ways to increase concurrent accesses: 
– Increase occupancy (run more warps concurrently) 

• Adjust threadblock dimensions 
– To maximize occupancy at given register and smem requirements 

• If occupancy is limited by registers per thread: 
– Reduce register count (-maxrregcount option, or __launch_bounds__) 

– Modify code to process several elements per thread 
• Doubling elements per thread doubles independent accesses per 

thread 

 
76 © 2012, NVIDIA 



Optimizations When Addresses Are Coalesced 

• When looking for more performance and code: 
– Is memory bandwidth limited 
– Achieves high percentage of bandwidth theory  
– Addresses are coalesced (ideal transaction per request ratio) 

• Consider compression 
– GPUs provide instructions for converting between fp16, fp32, and 

fp64 representations: 
• A single instruction, implemented in hw (__float2half(), ...) 

– If data has few distinct values, consider lookup tables 
• Store indices into the table 
• Small enough tables will likely survive in caches if used often enough 
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Summary: GMEM Optimization 

• Strive for perfect address coalescing per warp 
– Align starting address (may require padding) 
– A warp will ideally access within a contiguous region 
– Avoid scattered address patterns or patterns with large strides between threads 

 

• Analyze and optimize: 
– Use profiling tools (included with CUDA toolkit download) 
– Compare the transactions per request to the ideal ratio 
– Choose appropriate data layout 
– If needed, try read-only, non-caching loads 

• Have enough concurrent accesses to saturate the bus 
– Launch enough threads to maximize throughput 

• Latency is hidden by switching threads (warps) 

– If needed, process several elements per thread 
• More concurrent loads/stores 
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SHARED MEMORY 
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Shared Memory 

• On-chip (on each SM) memory 
• Comparing SMEM to GMEM: 

– Order of magnitude (20-30x) lower latency 
– Order of magnitude (~10x) higher bandwidth 
– Accessed at bank-width granularity 

• Fermi: 4 bytes 
• Kepler: 8 bytes 
• For comparison: GMEM access granularity is either 32 or 128 bytes 

• SMEM instruction operation: 
– 32 threads in a warp provide addresses 
– Determine into which 8-byte words (4-byte for Fermi) addresses fall 
– Fetch the words, distribute the requested bytes among the threads 

• Multi-cast capable 
• Bank conflicts cause serialization 
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Kepler Shared Memory Banking 

• 32 banks, 8 bytes wide 
– Bandwidth: 8 bytes per bank per clock per SM (256 bytes per clk per SM) 
– 2x the bandwidth compared to Fermi 

• Two modes: 
– 4-byte access (default): 

• Maintains Fermi bank-conflict behavior exactly 
• Provides 8-byte bandwidth for certain access patterns 

– 8-byte access: 
• Some access patterns with Fermi-specific padding may incur bank conflicts 
• Provides 8-byte bandwidth for all patterns (assuming 8-byte words) 

– Selected with cudaDeviceSetSharedMemConfig() function arguments: 
• cudaSharedMemBankSizeFourByte 
• cudaSharedMemBankSizeEightByte 
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Kepler 8-byte Bank Mode 

• Mapping addresses to banks: 
– Successive 8-byte words go to successive banks 

– Bank index:  
• (8B word index) mod 32 

• (4B word index) mod (32*2)  

• (byte address) mod (32*8) 

– Given the 8 least-significant address bits: ...BBBBBxxx 
• xxx selects the byte within an 8-byte word 

• BBBBB selects the bank 

• Higher bits select a “column” within a bank 
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Kepler 4-byte Bank Mode 

• Understanding this mapping details matters only if you’re trying 
to get 8-byte throughput in 4-byte mode 
– For all else just think that you have 32 banks, 4-bytes wide 

• Mapping addresses to banks: 
– Successive 4-byte words go to successive banks 

• We have to choose between two 4-byte “half-words” for each bank 
– “First” 32 4-byte words go to lower half-words 
– “Next” 32 4-byte words go to upper half-words 

– Given the 8 least-significant address bits: ...HBBBBBxx 
• xx selects the byte with a 4-byte word 
• BBBBB selects the bank 
• H selects the half-word within the bank 
• Higher bits select the “column” within a bank 
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Kepler 4-byte Bank Mode 

• To visualize, let’s pretend we have 4 banks, not 32 (easier to draw) 
– Looking at 5 least-significant address bits:  ...HBBxx 
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Comparing Bank Modes 

• To visualize, let’s pretend we have 4 banks, not 32 (easier to draw) 
– Looking at 5 least-significant address bits:  ...HBBxx 
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Case Study 6: Kepler 8-byte SMEM Access 

• TTI Reverse Time Migration 
– A seismic processing code, 3DFD 

• fundamental component is applying a 3D stencil to 2 wavefields to compute discrete 
derivatives 

– Natural to interleave the wavefields in shared memory: 
• store as a float2 structure 
• Also a slight benefit to global memory performance, on both Fermi and Kepler 

• Impact on performance from enabling 8-byte mode: 
– More SMEM operations as order in space increases 
– 8th order in space: 

• 2 kernels, only one uses shared memory 
• 1.14x full code speedup (1.18x kernel speedup) 

– 16th order in space: 
• 3 kernels, only one uses shared memory 
• 1.20x full code speedup (1.29x kernel speedup) 
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Shared Memory Bank Conflicts 

• A bank conflict occurs when: 
– 2 or more threads in a warp access different words in the 

same bank 
• Think: 2 or more threads access different “rows” in the same bank 

– N-way bank conflict: N threads in a warp conflict 
• Instruction gets issued N times: increases latency 

• Note there is no bank conflict if: 
– Several threads access the same word 

– Several threads access different bytes of the same word 
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SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: no bank conflicts 
    One address access per bank 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: no bank conflicts 
    One address access per bank 



SMEM Access Examples 

© 2012, NVIDIA 90 

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: no bank conflicts 
    Multiple addresses per bank, but within the same word 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: 2-way bank conflict 
    2 accesses per bank, fall in two different words 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: 3-way bank conflict 
    4 accesses per bank, fall in 3 different words 



Diagnosing Bank Conflicts 

• Profiler counters: 
– Number of instructions executed, does not include replays: 

• shared_load, shared_store 

– Number of replays (number of instruction issues due to bank conflicts) 
• l1_shared_bank_conflict 

• Analysis: 
– Number of replays per instruction 

• l1_shared_bank_conflict / (shared_load + shared_store) 

– Replays are potentially a concern because: 
• Replays add latency 
• Compete for issue cycles with other SMEM and GMEM operations 

– Except for read-only loads, which go to different hardware 

• Remedy: 
– Usually padding SMEM data structures resolves/reduces bank conflicts 
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Case Study 7: Matrix Transpose 

• Staged via SMEM to coalesce GMEM addresses 
– 32x32 threadblock, double-precision values 
– 32x32 array in shared memory 

• Initial implementation: 
– A warp writes a row of values to SMEM (read from GMEM) 
– A warp reads a column of values from SMEM (to be written to GMEM) 

• Diagnosing: 
– 15 replays per shared memory instruction 
– Replays make up 56% of instructions issued 

• Ratio of l1_shared_bank_conflict to inst_issued 

– Code achieves only 45% of DRAM bandwidth 
– Conclusion: bank conflicts add latency and prevent GMEM instructions from 

executing efficiently 
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Cast Study 7: Remedy and Results 

• Remedy: 
– Simply pad each row of SMEM array with an extra element 

• 32x33 array, as opposed to 32x32 
• Effort: 1 character, literally 

– Warp access to SMEM 
• Writes still have no bank conflicts:  

– threads access successive elements 

• Reads also have no bank conflicts: 
– Stride between threads is 17 8-byte words, thus each goes to a different bank 

• Results: 
– Initial: 22.6 ms (worse than naïve with scattered GMEM access) 
– Optimized: 11.2 ms (~2x speedup) 

• 0 bank conflicts, 65% of DRAM theory 
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Summary: Shared Memory 

• Shared memory is a tremendous resource 
– Very high bandwidth (terabytes per second) 
– 20-30x lower latency than accessing GMEM 
– Data is programmer-managed, no evictions by hardware 

• Performance issues to look out for: 
– Bank conflicts add latency and reduce throughput 
– Many-way bank conflicts can be very expensive 

• Replay latency adds up 
• However, few code patterns have high conflicts, padding is a very simple and effective solution 

• Kepler has 2x SMEM throughput compared to Fermi: 
– SMEM throughput is doubled by increasing bank width to 8 bytes 
– Kernels with 8-byte words will benefit without changing kernel code 

• Put GPU into 8-byte bank mode with cudaSetSharedMemConfig() call 

– Kernels with smaller words will benefit if words are grouped into 8-byte structures 
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ARITHMETIC OPTIMIZATIONS 
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Execution 

 

• Instructions are issued/executed per warp 
– Warp = 32 consecutive threads 

• Think of it as a “vector” of 32 threads 

• The same instruction is issued to the entire warp 
 

• Scheduling 
– Warps are scheduled at run-time 

– Hardware picks from warps that have an instruction ready to execute 
• Ready = all arguments are ready 

– Instruction latency is hidden by executing other warps 
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Control Flow 

• Single-Instruction Multiple-Threads (SIMT) model 
– A single instruction is issued for a warp (thread-vector) at a time 

• SIMT compared to SIMD: 
– SIMD requires vector code in each thread 

– SIMT allows you to write scalar code per thread  
• Vectorization is handled by hardware 

• Note: 
– All contemporary processors (CPUs and GPUs) are built by 

aggregating vector processing units 

– Vectorization is needed to get performance on CPUs and GPUs 
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Control Flow 
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if ( ... ) 
{ 
     // then-clause 
} 
else 
{ 
    // else-clause 
} 
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Execution within warps is coherent 

© 2012, NVIDIA 101 

in
st

ru
ct

io
n

s 
/ 

ti
m

e
 

Warp  
(“vector” of threads) 

35 34 33 63 62 32 3 2 1 31 30 0 

Warp  
(“vector” of threads) 



Execution diverges within a warp 
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Possible Performance Limiting Factors 

• Raw instruction throughput 
– Know the kernel instruction mix 
– fp32, fp64, int, mem, transcendentals, etc. have different throughputs 

• Refer to the CUDA Programming Guide / Best Practices Guide 
• Can examine assembly: use cuobjdump tool provided with CUDA toolkit 

– A lot of divergence can “waste” instructions 
 

• Instruction serialization 
– Occurs when threads in a warp issue the same instruction in sequence 

• As opposed to the entire warp issuing the instruction at once 
• Think of it as “replaying” the same instruction for different threads in a warp 

– Mostly:  
• Shared memory bank conflicts 
• Memory accesses that result in multiple transactions (scattered address patterns) 
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Instruction Throughput: Analysis 

• Compare achieved instruction throughput to HW capabilities 
– Profiler reports achieved throughput as IPC (instructions per clock) 
– Peak instruction throughput is documented in the Programming Guide 

• Profiler  also provides peak fp32 throughput for reference (doesn’t take your instruction mix into 
consideration) 

 

• Check for serialization 
– Number of replays due to serialization: instructions_issued - instructions_executed 
– Profiler reports: 

•  % of serialization metric  (ratio or replays to instructions issued) 
• Kepler: counts replays due to various memory access instructions 

– A concern if: code is instruction or latency-limited, replay percentage is high 
 

• Warp divergence 
– Profiler counters: divergent_branch, branch 
– Compare the two to see what percentage diverges 

• However, this only counts the branches, not the rest of serialized instructions 
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Instruction Throughput: Optimization 

• Use intrinsics where possible ( __sin(), __sincos(), __exp(), etc.) 
– Available for a number of math.h functions 
– 2-3 bits lower precision, much higher throughput 

• Refer to the CUDA Programming Guide for details 

– Often a single HW instruction, whereas a non-intrinsic is a SW sequence 

• Additional compiler flags that also help performance: 
– -ftz=true : flush denormals to 0 
– -prec-div=false : faster fp division instruction sequence (some precision loss)  
– -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss) 

• Make sure you do fp64 arithmetic only where you mean it: 
– fp64 throughput is lower than fp32 
– fp literals without an “f” suffix ( 34.7 ) are interpreted as fp64 per C standard 
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Instruction Throughput: Summary 

• Analyze: 
– Check achieved instruction throughput 
– Compare to HW peak (but keep instruction mix in mind) 
– Check percentage of instructions due to serialization 
 

• Optimizations: 
– Intrinsics, compiler options for expensive operations 
– Group threads that are likely to follow same execution path 

(minimize warp divergence) 
– Minimize memory access replays (SMEM and GMEM) 
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OPTIMIZING FOR KEPLER 
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Kepler Architecture Family 

• Two architectures in the family: 
– GK104 (Tesla K10, GeForce: GTX690, GTX680, GTX670, ...) 

• Note that K10 is 2 GK104 chips on a single board 

– GK110 (Tesla K20, ...) 

• GK110 has a number of features not in GK104: 
– Dynamic parallelism, HyperQ 
– More registers per thread, more fp64 throughput 
– For full details refer to: 

• Kepler Whitepaper 
• GTC12 Session 0642: “Inside Kepler” 
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Good News About Kepler Optimization 

• The same optimization fundamentals that applied to 
Fermi, apply to Kepler 
– There are no new fundamentals 

• Main optimization considerations: 
– Expose sufficient parallelism 

• SM is more powerful, so will need more work 

– Coalesce memory access 
• Exactly the same as on Fermi 

– Have coherent control flow within warps 
• Exactly the same as on Fermi 
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Level of Parallelism 

• Parallelism for memory is most important 
– Most codes don’t achieve peak fp throughput because: 

• Stalls waiting on memory (latency not completely hidden) 
• Execution of non-fp instructions (indexing, control-flow, etc.) 
• NOT because of lack of independent fp math 

• GK104: 
– Compared to Fermi, needs ~2x concurrent accesses per SM to saturate 

memory bandwidth 
• Memory bandwidth comparable to Fermi 
• 8 SMs while Fermi had 16 SMs 

– Doesn’t necessarily need twice the occupancy of your Fermi code 
• If Fermi code exposed more than sufficient parallelism, increase is less than 2x 
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Kepler SM Improvements for Occupancy 

• 2x registers 
– Both GK104 and GK110 
– 64K registers (Fermi had 32K) 
– Code where occupancy is limited by registers will readily achieve higher 

occupancy (run more concurrent warps) 

• 2x threadblocks 
– Both GK104 and GK110 
– Up to 16 threadblocks (Fermi had 8) 

• 1.33x more threads 
– Both GK104 and GK110 
– Up to 2048 threads (Fermi had 1536) 
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Increased Shared Memory Bandwidth 

• Both GK104 and GK110 

• To benefit, code must access 8-byte words 

– No changes for double-precision codes 

– Single-precision or integer codes should group accesses 
into float2, int2 strutures to get the benefit 

• Refer to Case Study 6 for a usecase sample 
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SM Improvements Specific to GK110 

• More registers per thread 
– A thread can use up to 255 registers (Fermi had 63) 
– Improves performance for some codes that spilled a lot of registers on 

Fermi (or GK104) 
• Note that more registers per thread still has to be weighed against lower 

occupancy 

• Ability to use read-only cache for accessing global memory 
– Improves performance for some codes with scattered access patterns, 

lowers the overhead due to replays 

• Warp-shuffle instruction (tool for ninjas) 
– Enables threads in the same warp to exchange values without going 

through shared memory 
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Case Study 8: More Registers Per Thread 

• TTI RTM code: 
– Same as used in Case Study 6 
– Can be implemented in 2 or 3 passes 

• http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels 

• 2-pass approach has fewer accesses to memory, but consumes many registers 
– Additional benefit: requires less storage than 3-pass 

• 3-pass approach has more accesses to memory, but consumes fewer registers 
• Higher order in space -> more registers needed 

• 16th order in space: 
– Fermi: 3-pass is faster than 2-pass 

• 2-pass spills too many registers, which causes extra memory traffic 

– GK110: 2-pass is 1.15x faster than 3-pass 
• The “large” kernel consumes 96 registers per thread, doesn’t spill 
• Can probably be improved further: literally 5 minutes were spent on optimization 
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Considerations for Dynamic Parallelism 

• GPU threads are able to launch work for GPU 

– GK110-specific feature 

• Same considerations as for launches from CPU 

– Same exact considerations for exposing sufficient parallelism 
as for “traditional” launches (CPU launches work for GPU) 

– A single launch doesn’t have to saturate the GPU: 

• GPU can execute up to 32 different kernel launches concurrently 

 

© 2012, NVIDIA 115 



In Conclusion 

• When programming and optimizing think about: 

– Exposing sufficient parallelism 

– Coalescing memory accesses 

– Having coherent control flow within warps 

• Use profiling tools when analyzing performance 

– Determine performance limiters first 

– Diagnose memory access patterns 
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Questions 
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