
GPU Performance Analysis and Optimization

Paulius Micikevicius

Developer Technology, NVIDIA

© 2012, NVIDIA 1

Goals of This Talk

© 2012, NVIDIA 2

• Give insight into how hardware operates
– Fermi and Kepler

• Connect hardware operation to performance
• Provide guidelines for diagnosing and optimizing

performance limiters
– Illustrate the use with brief case studies

• some Fermi, some Kepler

• Quick review of things to keep in mind when
transitioning from Fermi to Kepler

Outline

• Requirements for GPU performance

• Exposing Sufficient parallelism

• Optimizing GPU Memory Access

– Global memory

– Shared memory

• Optimizing GPU instruction execution

• Review of Kepler considerations

© 2012, NVIDIA 3

Additional Resources
• More information on topics for which we don’t have time in this session
• Kepler architecture:

– GTC12 Session S0642: Inside Kepler
– Kepler whitepapers (http://www.nvidia.com/object/nvidia-kepler.html)

• Assessing performance limiters:
– GTC10 Session 2012: Analysis-driven Optimization (slides 5-19):

• http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf

• Profiling tools:
– GTC12 sessions:

• S0419: Optimizing Application Performance with CUDA Performance Tools
• S0420: Nsight IDE for Linux and Mac
• ...

– CUPTI documentation (describes all the profiler counters)
• Included in every CUDA toolkit (/cuda/extras/cupti/doc/Cupti_Users_Guide.pdf

• Register spilling:
– Webinar:

• Slides: http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
• Video: http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4

• GPU computing webinars in general:
– http://developer.nvidia.com/gpu-computing-webinars

© 2012, NVIDIA 4

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars

Determining Performance Limiter for a Kernel

• Kernel performance is limited by one of:
– Memory bandwidth
– Instruction bandwidth
– Latency

• Usually the culprit when neither memory nor instruction throughput is a high-
enough percentage of theoretical bandwidth

• Determining which limiter is the most relevant for your kernel
– Not really covered in this presentation due to time
– Covered in more detail in session 2012 of GTC2010:

• Slides: 5-19, 45-49
• Link: http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
• Video: http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html

© 2012, NVIDIA 5

http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html
http://nvidia.fullviewmedia.com/gtc2010/0923-san-jose-2012.html

Topics For Ninjas

• Topics relevant to 1% (or less) of codes and developers
– So, if you’re not trying to squeeze out the last few % of

performance, you can ignore these

• Indicated with the following logo:

© 2012, NVIDIA 6

Main Requirements for GPU Performance

• Expose sufficient parallelism

• Coalesce memory access

• Have coherent execution within warp

© 2012, NVIDIA 7

EXPOSING SUFFICIENT PARALLELISM

© 2012, NVIDIA 8

Kepler: Level of Parallelism Needed

• To saturate instruction bandwidth:

– Fp32 math: ~1.7K independent instructions per SM

– Lower for other, lower-throughput instructions

– Keep in mind that Kepler SM can track up to 2048 threads

• To saturate memory bandwidth:

– 100+ independent lines per SM

© 2012, NVIDIA 9

Memory Parallelism

• Achieved Kepler memory thoughput
– As a function of the number of independent requests per SM
– Request: 128-byte line

© 2012, NVIDIA 10

Exposing Sufficient Parallelism

• What hardware ultimately needs:
– Arithmetic pipes:

• sufficient number of independent instructions
– accommodates multi-issue and latency hiding

– Memory system:
• sufficient requests in flight to saturate bandwidth

• Two ways to increase parallelism:
– More independent work within a thread (warp)

• ILP for math, independent accesses for memory

– More concurrent threads (warps)

© 2012, NVIDIA 11

Occupancy

• Occupancy: number of concurrent threads per SM
– Expressed as either:

• the number of threads (or warps),
• percentage of maximum threads

• Determined by several factors
– (refer to Occupancy Calculator, CUDA Programming Guide for full details)
– Registers per thread

• SM registers are partitioned among the threads

– Shared memory per threadblock
• SM shared memory is partitioned among the blocks

– Threads per threadblock
• Threads are allocated at threadblock granularity

© 2012, NVIDIA 12

Kepler SM resources
– 64K 32-bit registers
– Up to 48 KB of shared memory
– Up to 2048 concurrent threads
– Up to 16 concurrent threadblocks

Occupancy and Performance

• Note that 100% occupancy isn’t needed to reach maximum
performace
– Once the “needed” occupancy is reached, further increases won’t

improve performance

• Needed occupancy depends on the code
– More independent work per thread -> less occupancy is needed

– Memory-bound codes tend to need more occupancy
• Higher latency than for arithmetic, need more work to hide it

– We’ll discuss occupancy for memory- and math-bound codes later
in the presentation

© 2012, NVIDIA 13

Exposing Parallelism: Grid Configuration

• Grid: arrangement of threads into threadblocks

• Two goals:
– Expose enough parallelism to an SM

– Balance work across the SMs

• Several things to consider when launching kernels:
– Number of threads per threadblock

– Number of threadblocks

– Amount of work per threadblock

© 2012, NVIDIA 14

Threadblock Size and Occupancy

• Threadblock size is a multiple of warp size (32)
– Even if you request fewer threads, HW rounds up

• Threadblocks can be too small
– Kepler SM can run up to 16 threadblocks concurrently

– SM may reach the block limit before reaching good occupancy
• Example: 1-warp blocks -> 16 warps per Kepler SM (probably not enough)

• Threadblocks can be too big
– Quantization effect:

• Enough SM resources for more threads, not enough for another large block

• A threadblock isn’t started until resources are available for all of its threads

© 2012, NVIDIA 15

Threadblock Sizing

• SM resources:
– Registers
– Shared memory

© 2012, NVIDIA 16

Number of warps allowed by SM resources
Too few
threads
per block

Too many
threads
per block

Case Study 1: Threadblock Sizing

• Non-hydrostatic Icosahedral Model (NIM)
– Global weather simulation code, NOAA
– vdmintv kernel:

• 63 registers per thread, 3840 bytes of SMEM per warp
• At most 12 warps per Fermi SM (limited by SMEM)

• Initial grid: 32 threads per block, 10,424 blocks
– Blocks are too small:

• 8 warps per SM, limited by number of blocks (Fermi’s limit was 8)
• Code achieves a small percentage (~30%) of both math and memory

bandwidth

– Time: 6.89 ms

© 2012, NVIDIA 17

Case Study 1: Threadblock Sizing

• Optimized config: 64 threads per block, 5,212 blocks

– Occupancy: 12 warps per SM, limited by SMEM

– Time: 5.68 ms (1.21x speedup)

• Further optimization:

– Reduce SMEM consumption by moving variables to registers

• 63 registers per thread, 1536 bytes of SMEM per warp

– Occupancy: 16 warps per SM, limited by registers

– Time: 3.23 ms (2.13x speedup over original)

© 2012, NVIDIA 18

Waves and Tails

• Wave of threadblocks
– A set of threadblocks that run concurrently on GPU
– Maximum size of the wave is determined by:

• How many threadblocks can fit on one SM
– Number of threads per block
– Resource consumption: registers per thread, SMEM per block

• Number of SMs

• Any grid launch will be made up of:
– Some number of full waves
– Possibly one tail: wave with fewer than possible blocks

• Last wave by definition
• Happens if the grid size is not divisible by wave size

© 2012, NVIDIA 19

Tail Effect

• Tail underutilizes GPU
– Impacts performance if tail is a significant portion of time

• Example:
– GPU with 8 SMs
– Code that can run 1 threadblock per SM at a time

• Wave size = 8 blocks

– Grid launch: 12 threadblocks

• 2 waves:
– 1 full
– Tail with 4 threadblocks

• Tail utilizes 50% of GPU, compared to full-wave
• Overall GPU utilization: 75% of possible

© 2012, NVIDIA 20

SM

time

wave 0 wave 1 (tail)

Tail Effect

• A concern only when:
– Launching few threadblocks (no more than a few waves)
– Tail effect is negligible when launching 10s of waves

• If that’s your case, you can ignore the following info

• Tail effect can occur even with perfectly-sized grids
– Threadblocks don’t stay in lock-step

• To combat tail effect:
– Spread the work of one thread among several threads

• Increases the number of blocks -> increases the number of waves

– Spread the threads of one block among several
• Improves load balancing during the tail

– Launch independent kernels into different streams
• Hardware will execute threadblocks from different kernels to fill the GPU

© 2012, NVIDIA 21

Tail Effect: Large vs Small Threadblocks

© 2012, NVIDIA 22

 2 waves of threadblocks

— Tail is running at 25% of possible

— Tail is 50% of time

 Could be improved if the tail work could be
better balanced across SMs

 2 waves of threadblocks

— Tail is running at 75% of possible

— Tail is 25% of time

 Tail work is spread across more
threadblocks, better balanced across SMs

 Estimated speedup: 1.5x (time reduced by 33%)
wave 0 wave 1 (tail)

wave 0 wave 1 (tail)

Tail Effect: Few vs Many Waves of Blocks

© 2012, NVIDIA 23

SM

80% of time code runs at 100% of its ability, 20% of time it runs at 50% of ability: 90% of possible

95% of time code runs at 100% of its ability, 5% of time it runs at 50% of ability: 97.5% of possible

time

General Guidelines

• Threadblock size choice:
– Start with 128-256 threads per block

• Adjust up/down by what best matches your function
• Example: stencil codes prefer larger blocks to minimize halos

– Multiple of warp size (32 threads)
– If occupancy is critical to performance:

• Check that block size isn’t precluding occupancy allowed by register and
SMEM resources

• Grid size:
– 1,000 or more threadblocks

• 10s of waves of threadblocks: no need to think about tail effect
• Makes your code ready for several generations of future GPUs

© 2012, NVIDIA 24

GLOBAL MEMORY

© 2012, NVIDIA 25

Kepler Memory Hierarchy

© 2012, NVIDIA 26

L2

Global Memory (DRAM)

Registers

L1

SM-1

SMEM
Read
only

Registers

L1

SM-N

SMEM
Read
only

Registers

L1

SM-0

SMEM
Read
only

Memory Hierarchy Review
• Registers

– Storage local to each threads
– Compiler-managed

• Shared memory / L1
– 64 KB, program-configurable into shared:L1
– Program-managed
– Accessible by all threads in the same threadblock
– Low latency, high bandwidth: 1.5-2 TB/s on Kepler GK104

• Read-only cache
– Up to 48 KB per Kepler SM
– Hardware-managed (also used by texture units)
– Used for read-only GMEM accesses (not coherent with writes)

• L2
– Up to: 512 KB on Kepler GK104, 1.5 MB on Kepler GK110 (768 KB on Fermi)
– Hardware-managed: all accesses to global memory go through L2, including CPU and peer GPU

• Global memory
– Accessible by all threads, host (CPU), other GPUs in the same system
– Higher latency (400-800 cycles)
– Tesla K10 bandwidth: 2x160 GB/s (2 chips on a board)

© 2012, NVIDIA 27

Blocking for L1, Read-only, L2 Caches

• Short answer: DON’T
• GPU caches are not intended for the same use as CPU caches

– Smaller size (especially per thread), so not aimed at temporal reuse
– Intended to smooth out some access patterns, help with spilled

registers, etc.

• Usually not worth trying to cache-block like you would on CPU
– 100s to 1,000s of run-time scheduled threads competing for the cache
– If it is possible to block for L1 then it’s possible block for SMEM

• Same size
• Same or higher bandwidth
• Guaranteed locality: hw will not evict behind your back

© 2012, NVIDIA 28

L1 Sizing

• Shared memory and L1 use the same 64KB
– Program-configurable split:

• Fermi: 48:16, 16:48

• Kepler: 48:16, 16:48, 32:32

– CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

• Large L1 can improve performance when:
– Spilling registers (more lines in the cache -> fewer evictions)

– Some offset, small-stride access patterns

• Large SMEM can improve performance when:
– Occupancy is limited by SMEM

© 2012, NVIDIA 29

Global Memory Operations

• Memory operations are executed per warp
– 32 threads in a warp provide memory addresses
– Hardware determines into which lines those addresses fall

• Stores:
– Invalidate L1, go at least to L2, 32-byte granularity

• Three types of loads:
– Caching (default)
– Non-caching
– Read-only (new option in GK110)

© 2012, NVIDIA 30

Load Operation

• Caching (default mode)
– Attempts to hit in L1, then L2, then GMEM
– Load granularity is 128-byte line

• Non-caching
– Compile with –Xptxas –dlcm=cg option to nvcc
– Attempts to hit in L2, then GMEM

• Does not hit in L1, invalidates the line if it’s in L1 already

– Load granularity is 32 bytes

• Read-only
– Loads via read-only cache:

• Attempts to hit in Read-only cache, then L2, then GMEM

– Load granularity is 32 bytes

© 2012, NVIDIA 31

Read-only Loads

• Go through the read-only cache
– Not coherent with writes
– Thus, addresses must not be written by the same kernel

• Two ways to enable:
– Decorating pointer arguments as hints to compiler:

• Pointer of interest: __restrict__ const
• All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

– Using __ldg() intrinsic
• Requires no pointer decoration

– Requires GK110 hardware
• On prior hardware you can get similar functionality with textures

© 2012, NVIDIA 32

Read-only Loads

• Go through the read-only cache
– Not coherent with writes
– Thus, addresses must not be written by the same kernel

• Two ways to enable:
– Decorating pointer arguments as hints to compiler:

• Pointer of interest: __restrict__ const
• All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

– Using __ldg() intrinsic
• Requires no pointer decoration

– Requires GK110 hardware
• On prior hardware you can get similar functionality with textures

© 2012, NVIDIA 33

__global__ void kernel(__restrict__ int *output,
 __restrict__ const int *input)
{
 ...
 output[idx] = ... + input[idx];
}

Read-only Loads

• Go through the read-only cache
– Not coherent with writes
– Thus, addresses must not be written by the same kernel

• Two ways to enable:
– Decorating pointer arguments as hints to compiler:

• Pointer of interest: __restrict__ const
• All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

– Using __ldg() intrinsic
• Requires no pointer decoration

– Requires GK110 hardware
• On prior hardware you can get similar functionality with textures

© 2012, NVIDIA 34

__global__ void kernel(int *output,
 int *input)
{
 ...
 output[idx] = ... + __ldg(input[idx]);
}

Load Caching

• Non-caching loads can improve performance when:

– Loading scattered words or only part of a warp issues a load

• Benefit: memory transaction is smaller, so useful payload is a larger
percentage

• Loading halos, for example

– Spilling registers (reduce line fighting with spillage)

• Read-only loads:

– Can improve performance for scattered reads

– Latency is a bit higher than for caching/non-caching loads

35 © 2012, NVIDIA

Caching Load

• Scenario:
– Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 1 cache-line
– Warp needs 128 bytes
– 128 bytes move across the bus on a miss
– Bus utilization: 100%

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

36 © 2012, NVIDIA

Non-caching/Read-only Load

• Scenario:
– Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 4 segments
– Warp needs 128 bytes
– 128 bytes move across the bus on a miss
– Bus utilization: 100%

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

37 © 2012, NVIDIA

Caching Load

...
addresses from a warp

• Scenario:
– Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 1 cache-line
– Warp needs 128 bytes
– 128 bytes move across the bus on a miss
– Bus utilization: 100%

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

38 © 2012, NVIDIA

Non-caching/Read-only Load

...
addresses from a warp

• Scenario:
– Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 4 segments
– Warp needs 128 bytes
– 128 bytes move across the bus on a miss
– Bus utilization: 100%

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

39 © 2012, NVIDIA

Caching Load

• Scenario:
– Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within 2 cache-lines
– Warp needs 128 bytes
– 256 bytes move across the bus on misses
– Bus utilization: 50%

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

...
addresses from a warp

40 © 2012, NVIDIA

Non-caching/Read-only Load

• Scenario:
– Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within at most 5 segments
– Warp needs 128 bytes
– At most 160 bytes move across the bus
– Bus utilization: at least 80%

• Some misaligned patterns will fall within 4 segments, so 100% utilization

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

41 © 2012, NVIDIA

...
addresses from a warp

Caching Load

...
addresses from a warp

• Scenario:
– All threads in a warp request the same 4-byte word

• Addresses fall within a single cache-line
– Warp needs 4 bytes
– 128 bytes move across the bus on a miss
– Bus utilization: 3.125%

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

42 © 2012, NVIDIA

Non-caching/Read-only Load

addresses from a warp

• Scenario:
– All threads in a warp request the same 4-byte word

• Addresses fall within a single segment
– Warp needs 4 bytes
– 32 bytes move across the bus on a miss
– Bus utilization: 12.5%

...

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

43 © 2012, NVIDIA

Caching Load

...
addresses from a warp

• Scenario:
– Warp requests 32 scattered 4-byte words

• Addresses fall within N cache-lines
– Warp needs 128 bytes
– N*128 bytes move across the bus on a miss
– Bus utilization: 128 / (N*128)

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

44 © 2012, NVIDIA

Non-caching/Read-only Load

addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

• Scenario:
– Warp requests 32 scattered 4-byte words

• Addresses fall within N segments
– Warp needs 128 bytes
– N*32 bytes move across the bus on a miss
– Bus utilization: 128 / (N*32) (4x higher than caching loads)

...

45 © 2012, NVIDIA

Memory Throughput Analysis

• Two perspectives on the throughput:
– Application’s point of view:

• count only bytes requested by application

– HW point of view:
• count all bytes moved by hardware

• The two views can be different:
– Memory is accessed at 32 or 128 byte granularity

• Scattered/offset pattern: application doesn’t use all the hw transaction bytes

– Broadcast: the same small transaction serves many threads in a warp

• Two aspects to inspect for performance impact:
– Address pattern
– Number of concurrent accesses in flight

© 2012, NVIDIA 46

Causes for Suboptimal Memory Performance

• Suboptimal address patterns
– Throughput from HW point of view is significantly higher than from app

point of view
– Four general categories:

1) Offset (not line-aligned) warp addresses
2) Large strides between threads within a warp
3) Each thread accesses a large contiguous region
4) Irregular (scattered) addresses

• Insufficient concurrent accesses
– Arithmetic intensity is low (code should be bandwidth-bound)
– Throughput from HW point of view is much lower than theory

• Say, below 60%

© 2012, NVIDIA 47

Two Ways to Investigate Address Patterns

• Profiler-computed load and store efficiency
– Efficiency = bytes requested by the app / bytes transferred
– Accurate, but will slow down code substantially:

• Bytes-requested is measured by profiler instrumenting code for some load/store instruction
• Thus, you may want to run for smaller data set

• Transactions per request:
– Fast: requires collecting 5 profiler counters
– Accurate if all accesses are for the same word-size (4-byte, 8-byte, etc.)

• Less accurate if a kernel accesses words of varying sizes (still OK if you know statistical distribution)

– Loads:
• Make sure to use caching loads for this analysis
• Compute (l1_global_load_hit+l1_global_load_miss) to gld_request ratio
• Compare to the ideal ratio: 32 threads/warp * word size in bytes / 128 bytes per line

– 1.0 for 4-byte words, 2.0 for 8-byte words, 1.5 if 50% accesses are 4-byte and 50% are 8-byte

– Stores:
• Compute global_store_transaction to gst_request ratio
• Compare to the ideal ratio: 32 * word size in bytes / 128

© 2012, NVIDIA 48

Pattern Category 1: Offset Access

• Cause:
– Region addressed by a warp is not aligned on cache-line boundary

• Issue:
– Wasted bandwidth: only a fraction of some lines is used
– Some increase in latency

• Symptom:
– Transactions per request 1.5-2.0x higher than ideal
– Likely: moderate to medium L1 hit rate

• Remedies:
– Extra padding for data to force alignment
– Try non-caching loads, read-only loads

• Reduce overfetched bytes, but don’t fully solve the problem

© 2012, NVIDIA 49

Pattern Category: Offset Access

• Cause:
– Region addressed by a warp is not aligned on cache-line boundary

• Issue:
– Wasted bandwidth: only a fraction of some lines is used
– Some increase in latency

• Symptom:
– Transactions per request 1.5-2.0x higher than ideal
– Likely: moderate to medium L1 hit rate

• Remedy:
– Extra padding for data to force alignment
– Try non-caching loads, read-only loads

• Reduce overfetched bytes, but don’t fully solve the problem

© 2012, NVIDIA 50

...
addresses from a warp

Pattern Category 1: Offset Access

• Cause:
– Region addressed by a warp is not aligned on cache-line boundary

• Issue:
– Wasted bandwidth: only a fraction of some lines is used
– Some increase in latency

• Symptom:
– Transactions per request 1.5-2.0x higher than ideal
– Likely: moderate to medium L1 hit rate

• Remedies:
– Full: extra padding for data to force alignment
– Partial: non-caching loads, read-only loads

• Reduce overfetched bytes, but don’t fully solve the problem

© 2012, NVIDIA 51

Case Study 2: Offset Address Pattern

• Isotropic RTM, 8th order in space
– Seismic processing: propagate pressure wave
– Major component: 3DFD computation (Laplacian discretization)

• Data requires padding to avoid out of bounds accesses
– Minimum: pad by 4 elements on all 6 sides of data
– Minimum padding causes offset access pattern

• Diagnosing:
– Transactions per request:

• Ideal ratio: 1 (single-precision float code)
• Loads: 1.78
• Stores: 2.00

– L1 hit rate: 15.6%

© 2012, NVIDIA 52

Case Study 2: Cause

• Looking at the 2 fastest-varying dimensions, 512x512x512 problem
– Computational domain: 512 cells per row
– R=4 (stencil “radius”)

© 2012, NVIDIA 53

• For perfect coalescing we need:

– Row size, after padding, to be a
multiple of 128 bytes (32 floats)

– The first non-padding element to
be at a multiple of 128 bytes

520

Computational domain R R

idx = 4

Idx = 524

Idx = 1044

Case Study 2: Remedy

© 2012, NVIDIA 54

520

Computational domain R R

idx = 4

Idx = 524

Idx = 1044

544

Computational domain
Pad = 28

lead R = 4

28

Idx = 1664

idx = 32

Idx = 576

Idx = 1120

• Looking at the 2 fastest-varying dimensions, 512x512x512 problem
– Computational domain: 512 cells per row
– R=4 (stencil “radius”)

Case Study 2: Result

• Programming effort: 3 lines
– 2 additional lines for allocation

– 1 additional line to adjust the pointer to skip past the lead-
padding before passing it to the function

– No changes to the function code

• Performance impact:
– Kepler: 1.20x speedup

– Fermi: 1.18x speedup

– 1.0 transactions per request, for both loads and stores

© 2012, NVIDIA 55

Pattern Category 2: Large Inter-thread Stride

• Cause:
– Successive threads access words at regular distance, distance greater than one word

• GPU access words: 1, 2, 4, 8, 16 bytes

– Example cases:
• Data transpose (warp accessing a column in a row-major data structure)
• Cases where some data is accessed in transposed fashion, other isn’t

• Issues:
– Wasted bandwidth: moves more bytes than needed
– Substantially increased latency:

• If a warp address pattern requires N transactions, the instruction is issued N times

• Symptoms:
– Transactions per request much greater than ideal

• Remedies:
– Full: change data layout, stage accesses via SMEM
– Partial: non-caching loads, read-only loads

© 2012, NVIDIA 56

Case Study 3: Matrix Transpose

• Double-precision elements
• Row-major storage order
• Naïve implementation:

– Square threadblocks
– Each thread:

• Computes its global x and y coordinates
• Reads from (x,y), writes to (y,x)

© 2012, NVIDIA 57

WRITE READ

thread X

thread (X+1)

Case Study 3: Diagnosis

• Double-precision elements:
– ideally 2.0 transactions per request

• Measured values:
– 2.0 lines per load
– 32 transactions per store
– 75% of DRAM bandwidth

• Conclusions:
– Performance is bandwidth-limited (75% of theory is very good)
– Much of the bandwidth is wasted due to store pattern

• Number of store transactions is 16x higher than ideal

© 2012, NVIDIA 58

Case Study 3: Cause and Remedy

• Cause:
– Due to nature of operation, one of the accesses (read or write) will

be at large strides
• 32 doubles (256 bytes) in this case
• Thus, bandwidth will be wasted as only a portion of a transaction is used by

the application

• Remedy
– Stage accesses through shared memory
– A threadblock:

• Reads a tile from GMEM to SMEM
• Transposes the tile in SMEM
• Write a tile, in a coalesced way, from SMEM to GMEM

© 2012, NVIDIA 59

Case Study 3: Result

• Naïve implementation:

– 16.7 ms

– 32 transactions per store

• Optimized implementation:

– 11.2 ms (1.5x speedup)

– 2 transactions per store

© 2012, NVIDIA 60

Pattern Category 3: Large Contiguous Region Per Thread

• Cause:
– Each thread accesses its own contiguous region of memory, region is several words in size
– Example: Array of Structures (AoS) data layout

• Issues:
– Wasted bandwidth:

• Reads: same bytes are fetched redundantly (lines get evicted before all bytes are consumed)
• Stores: wasted bandwidth since stores happen at 32-byte granularity

– Substantially increased latency:
• If a warp address pattern requires N transactions, the instruction is issued N times

• Symptoms:
– Transactions per request much greater than ideal ratio

• For loads, not a problem if L1 misses per request are equal to the ideal ratio

– Usually medium to high L1 hit rate

• Remedies:
– Full:

• Change data layout (Structure of Arrays instead of AoS)
• Process the region with several threads to get coalescing

– Partial: read-only loads

© 2012, NVIDIA 61

Case Study 4: SoA vs AoS

• Global shallow water model
– Stencil computation for wave dynamics (height, velocity)
– Double-precision code

• Initial implementation:
– Array of Structures data layout

• A structure has 20 fp64 members (160 bytes)

– Each thread is responsible for one structure:
• Stencil computation:

– Read own structure members
– Read neighbors’ structure members

• Write output structure

© 2012, NVIDIA 62

Case Study 4: Diagnosing

• Double-precision code, so ideal ratio is 2.0 for loads and stores
• Measured values:

– 24.5 L1 lines per load
– 73% L1 hit rate
– 6.0 transactions per store
– Throughputs:

• 23% of DRAM bandwidth
• 13% of instruction bandwidth

• Conclusion
– Performance is latency-limited

• Both throughputs are small percentages of theory
• Recall that high reissues of memory instructions increase latency

– Address pattern wastes bandwidth:
• transactions per request much higher than 2.0
• Even with 73% hit rate, (1-0.73) * 24.5 = ~6.6 L1 load misses per request

© 2012, NVIDIA 63

Case Study 4: Cause

• Array of Structures data layout:
– Threads in a warp access at 160 byte (20 fp64) stride

• Each thread consumes more than 1 line, but line gets evicted before full use

– Even after L1 hits, we’re reading ~3x more bytes than needed
– Load and store replays (due to multiple transactions per warp)

increase latency, latency is the limiting factor for this code

• Two possible solutions:
– Try reading through read-only cache

• This is just a partial remedy:
– Helps reduce wasted bandwidth (smaller granularity for access and caching)
– Improves, but doesn’t resolve the latency increase due to replays

– Rearrange the data from Array of Structures to Structure of Arrays
• The ultimate solution, addresses both latency and wasted bandwidth

© 2012, NVIDIA 64

Case Study 4: Results

• Original code (Array of Structures):
– Time: 22.8 ms
– 24.5 transactions per load, 6 transactions per store

• Code using read-only loads:
– Time: 15.7 ms (1.45x speedup over original)

• Code with Structure of Arrays data layout:
– Time: 9.3 ms (2.45x speedup over original)
– Successive threads access successive words

• 3 transactions per load request
– Due to offset halo reads: addressed with non-caching loads: 8.9ms (2.56x speedup)

• 2 transactions per store request

© 2012, NVIDIA 65

Case Study 5: Assigning More Threads per Region

• CAM HOMME
– Climate modeling code, double precision
– Spectral element code, 4x4x26 elements
– CUDA Fortran (x26 is the slowest varying dimension)
– Limiter2d_zero function:

• For each element:
– Read 4x4x26 values from GMEM
– For each of 26 levels:

» Compute the sum over 4x4 values
» Adjust the values based on the sum
» Write adjusted values to GMEM

• Initial implementation:
– One thread for each of 26 levels

© 2012, NVIDIA 66

Case Study 5: Diagnosing

• Ideal transactions per request: 2.0 for loads and stores
• Measured values:

– Loads: 31.4
– Stores: 31.3
– L1 hit rate: 54.9%
– Achieved throughputs:

• 21% of DRAM bandwidth
• 17% of instruction bandwidth

• Conclusions:
– Performance is latency-limited
– Address pattern wastes bandwidth:

• Transactions per request much higher than 2.0
• Even with 54.9% hit rate, (1-0.549) * 31.4 = ~14.2 L1 load misses per request

© 2012, NVIDIA 67

Case Study 5: Cause and Remedy

• Each thread loops through 16 consecutive doubles
– Each thread accesses a contiguous region of 128 bytes

• Threads in a warp address at 128-byte stride

– Each memory instruction has 32 transactions:
• Dramatic increase in latency: each instruction is issued 32 times

– Bandwidth is wasted since lines are fetched redundantly

• Remedy:
– Assign 16 threads per 4x4 level, as opposed to 1

– No need to rearrange the data

© 2012, NVIDIA 68

Case Study 5: Results

• Initial implementation:
– Time: 2.30 ms

– ~32 transactions per request, both loads and stores

– Achieves 21% of DRAM bandwidth

• Optimized implementation:
– Time: 0.52 ms (4.45x speedup)

– ~2 transactions per request, both loads and stores

– Achieves 63% of DRAM bandwidth

© 2012, NVIDIA 69

Pattern Category 4: Irregular Address

• Cause:
– Threads in a warp access many lines, strides are irregular

• Issues:
– Wasted bandwidth: not all the bytes in the lines are used by application
– Increased latency: if N transactions are needed per instruction,

instruction is issued N times

• Symptoms:
– Transactions per request much higher than ideal
– Low to none L1 hits

• Remedies:
– Partial: non-caching loads, read-only loads

© 2012, NVIDIA 70

...
addresses from a warp

Pattern Category 4: Irregular Address

• Cause:
– Threads in a warp access many lines, strides are irregular

• Issues:
– Wasted bandwidth: not all the bytes in the lines are used by application
– Increased latency: if N transactions are needed per instruction,

instruction is issued N times

• Symptoms:
– Transactions per request much higher than ideal
– Low to none L1 hits

• Remedies:
– Partial: non-caching loads, read-only loads

© 2012, NVIDIA 71

Summary of Pattern Categories and their Symptoms

© 2012, NVIDIA 72

Address Pattern Category Transactions per request L1 hit rate

Offset 1.5 – 2.0x the ideal Low – 50%

Large stride between threads Medium-high Low or none

Contiguous per thread High Medium-high

Scattered-irregular High Low or none

Summary of Pattern Categories and their Symptoms

© 2012, NVIDIA 73

Address Pattern Category Transactions per request L1 hit rate

Offset 1.5 – 2.0x the ideal Low – 50%

Large stride between threads Medium-high Low or none

Contiguous per thread High Medium-high

Scattered-irregular High Low or none

The difference between these patterns is regular (large-stride) vs irregular scatter

Having Sufficient Concurrent Accesses

• In order to saturate memory bandwidth, SM must
issue enough independent memory requests

© 2012, NVIDIA 74

Elements per Thread and Performance

• Experiment: each warp has 2 concurrent requests (memcopy, one word per thread)
– 4B word request: 1 line
– 8B word request: 2 lines
– 16B word request: 4 lines

75
© 2012, NVIDIA

• To achieve the same
throughput at lower
occupancy:
– Need more independent

requests per warp

• To achieve the same
throughput with smaller
words:
– Need more independent

requests per warp

Optimizing Access Concurrency

• Have enough concurrent accesses to saturate the bus
– Little’s law: need (mem_latency)x(bandwidth) bytes

• Ways to increase concurrent accesses:
– Increase occupancy (run more warps concurrently)

• Adjust threadblock dimensions
– To maximize occupancy at given register and smem requirements

• If occupancy is limited by registers per thread:
– Reduce register count (-maxrregcount option, or __launch_bounds__)

– Modify code to process several elements per thread
• Doubling elements per thread doubles independent accesses per

thread

76 © 2012, NVIDIA

Optimizations When Addresses Are Coalesced

• When looking for more performance and code:
– Is memory bandwidth limited
– Achieves high percentage of bandwidth theory
– Addresses are coalesced (ideal transaction per request ratio)

• Consider compression
– GPUs provide instructions for converting between fp16, fp32, and

fp64 representations:
• A single instruction, implemented in hw (__float2half(), ...)

– If data has few distinct values, consider lookup tables
• Store indices into the table
• Small enough tables will likely survive in caches if used often enough

© 2012, NVIDIA 77

Summary: GMEM Optimization

• Strive for perfect address coalescing per warp
– Align starting address (may require padding)
– A warp will ideally access within a contiguous region
– Avoid scattered address patterns or patterns with large strides between threads

• Analyze and optimize:
– Use profiling tools (included with CUDA toolkit download)
– Compare the transactions per request to the ideal ratio
– Choose appropriate data layout
– If needed, try read-only, non-caching loads

• Have enough concurrent accesses to saturate the bus
– Launch enough threads to maximize throughput

• Latency is hidden by switching threads (warps)

– If needed, process several elements per thread
• More concurrent loads/stores

© 2012, NVIDIA 78

SHARED MEMORY

© 2012, NVIDIA 79

Shared Memory

• On-chip (on each SM) memory
• Comparing SMEM to GMEM:

– Order of magnitude (20-30x) lower latency
– Order of magnitude (~10x) higher bandwidth
– Accessed at bank-width granularity

• Fermi: 4 bytes
• Kepler: 8 bytes
• For comparison: GMEM access granularity is either 32 or 128 bytes

• SMEM instruction operation:
– 32 threads in a warp provide addresses
– Determine into which 8-byte words (4-byte for Fermi) addresses fall
– Fetch the words, distribute the requested bytes among the threads

• Multi-cast capable
• Bank conflicts cause serialization

© 2012, NVIDIA 80

Kepler Shared Memory Banking

• 32 banks, 8 bytes wide
– Bandwidth: 8 bytes per bank per clock per SM (256 bytes per clk per SM)
– 2x the bandwidth compared to Fermi

• Two modes:
– 4-byte access (default):

• Maintains Fermi bank-conflict behavior exactly
• Provides 8-byte bandwidth for certain access patterns

– 8-byte access:
• Some access patterns with Fermi-specific padding may incur bank conflicts
• Provides 8-byte bandwidth for all patterns (assuming 8-byte words)

– Selected with cudaDeviceSetSharedMemConfig() function arguments:
• cudaSharedMemBankSizeFourByte
• cudaSharedMemBankSizeEightByte

© 2012, NVIDIA 81

Kepler 8-byte Bank Mode

• Mapping addresses to banks:
– Successive 8-byte words go to successive banks

– Bank index:
• (8B word index) mod 32

• (4B word index) mod (32*2)

• (byte address) mod (32*8)

– Given the 8 least-significant address bits: ...BBBBBxxx
• xxx selects the byte within an 8-byte word

• BBBBB selects the bank

• Higher bits select a “column” within a bank

© 2012, NVIDIA 82

Kepler 4-byte Bank Mode

• Understanding this mapping details matters only if you’re trying
to get 8-byte throughput in 4-byte mode
– For all else just think that you have 32 banks, 4-bytes wide

• Mapping addresses to banks:
– Successive 4-byte words go to successive banks

• We have to choose between two 4-byte “half-words” for each bank
– “First” 32 4-byte words go to lower half-words
– “Next” 32 4-byte words go to upper half-words

– Given the 8 least-significant address bits: ...HBBBBBxx
• xx selects the byte with a 4-byte word
• BBBBB selects the bank
• H selects the half-word within the bank
• Higher bits select the “column” within a bank

© 2012, NVIDIA 83

Kepler 4-byte Bank Mode

• To visualize, let’s pretend we have 4 banks, not 32 (easier to draw)
– Looking at 5 least-significant address bits: ...HBBxx

© 2012, NVIDIA 84

0 4

8

Bank-0

1 5

9

Bank-1

2 6

Bank-2

3 7

Bank-3

0 1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28 32 38

9

40

Data:
 (or 4B-word index)

Byte-address:

SMEM:

Comparing Bank Modes

• To visualize, let’s pretend we have 4 banks, not 32 (easier to draw)
– Looking at 5 least-significant address bits: ...HBBxx

© 2012, NVIDIA 85

0 1

8 9

Bank-0

2 3

Bank-1

4 5

Bank-2

6 7

Bank-3

0 1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28 32 38

9

40

Data:
 (or 4B-word index)

Byte-address:

0 4

8

Bank-0

1 5

9

Bank-1

2 6

Bank-2

3 7

Bank-3

Case Study 6: Kepler 8-byte SMEM Access

• TTI Reverse Time Migration
– A seismic processing code, 3DFD

• fundamental component is applying a 3D stencil to 2 wavefields to compute discrete
derivatives

– Natural to interleave the wavefields in shared memory:
• store as a float2 structure
• Also a slight benefit to global memory performance, on both Fermi and Kepler

• Impact on performance from enabling 8-byte mode:
– More SMEM operations as order in space increases
– 8th order in space:

• 2 kernels, only one uses shared memory
• 1.14x full code speedup (1.18x kernel speedup)

– 16th order in space:
• 3 kernels, only one uses shared memory
• 1.20x full code speedup (1.29x kernel speedup)

© 2012, NVIDIA 86

Shared Memory Bank Conflicts

• A bank conflict occurs when:
– 2 or more threads in a warp access different words in the

same bank
• Think: 2 or more threads access different “rows” in the same bank

– N-way bank conflict: N threads in a warp conflict
• Instruction gets issued N times: increases latency

• Note there is no bank conflict if:
– Several threads access the same word

– Several threads access different bytes of the same word

© 2012, NVIDIA 87

SMEM Access Examples

© 2012, NVIDIA 88

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: no bank conflicts
 One address access per bank

SMEM Access Examples

© 2012, NVIDIA 89

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: no bank conflicts
 One address access per bank

SMEM Access Examples

© 2012, NVIDIA 90

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: no bank conflicts
 Multiple addresses per bank, but within the same word

SMEM Access Examples

© 2012, NVIDIA 91

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: 2-way bank conflict
 2 accesses per bank, fall in two different words

SMEM Access Examples

© 2012, NVIDIA 92

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: 3-way bank conflict
 4 accesses per bank, fall in 3 different words

Diagnosing Bank Conflicts

• Profiler counters:
– Number of instructions executed, does not include replays:

• shared_load, shared_store

– Number of replays (number of instruction issues due to bank conflicts)
• l1_shared_bank_conflict

• Analysis:
– Number of replays per instruction

• l1_shared_bank_conflict / (shared_load + shared_store)

– Replays are potentially a concern because:
• Replays add latency
• Compete for issue cycles with other SMEM and GMEM operations

– Except for read-only loads, which go to different hardware

• Remedy:
– Usually padding SMEM data structures resolves/reduces bank conflicts

© 2012, NVIDIA 93

Case Study 7: Matrix Transpose

• Staged via SMEM to coalesce GMEM addresses
– 32x32 threadblock, double-precision values
– 32x32 array in shared memory

• Initial implementation:
– A warp writes a row of values to SMEM (read from GMEM)
– A warp reads a column of values from SMEM (to be written to GMEM)

• Diagnosing:
– 15 replays per shared memory instruction
– Replays make up 56% of instructions issued

• Ratio of l1_shared_bank_conflict to inst_issued

– Code achieves only 45% of DRAM bandwidth
– Conclusion: bank conflicts add latency and prevent GMEM instructions from

executing efficiently

© 2012, NVIDIA 94

Cast Study 7: Remedy and Results

• Remedy:
– Simply pad each row of SMEM array with an extra element

• 32x33 array, as opposed to 32x32
• Effort: 1 character, literally

– Warp access to SMEM
• Writes still have no bank conflicts:

– threads access successive elements

• Reads also have no bank conflicts:
– Stride between threads is 17 8-byte words, thus each goes to a different bank

• Results:
– Initial: 22.6 ms (worse than naïve with scattered GMEM access)
– Optimized: 11.2 ms (~2x speedup)

• 0 bank conflicts, 65% of DRAM theory

© 2012, NVIDIA 95

Summary: Shared Memory

• Shared memory is a tremendous resource
– Very high bandwidth (terabytes per second)
– 20-30x lower latency than accessing GMEM
– Data is programmer-managed, no evictions by hardware

• Performance issues to look out for:
– Bank conflicts add latency and reduce throughput
– Many-way bank conflicts can be very expensive

• Replay latency adds up
• However, few code patterns have high conflicts, padding is a very simple and effective solution

• Kepler has 2x SMEM throughput compared to Fermi:
– SMEM throughput is doubled by increasing bank width to 8 bytes
– Kernels with 8-byte words will benefit without changing kernel code

• Put GPU into 8-byte bank mode with cudaSetSharedMemConfig() call

– Kernels with smaller words will benefit if words are grouped into 8-byte structures

© 2012, NVIDIA 96

ARITHMETIC OPTIMIZATIONS

© 2012, NVIDIA 97

Execution

• Instructions are issued/executed per warp
– Warp = 32 consecutive threads

• Think of it as a “vector” of 32 threads

• The same instruction is issued to the entire warp

• Scheduling
– Warps are scheduled at run-time

– Hardware picks from warps that have an instruction ready to execute
• Ready = all arguments are ready

– Instruction latency is hidden by executing other warps

98

Control Flow

• Single-Instruction Multiple-Threads (SIMT) model
– A single instruction is issued for a warp (thread-vector) at a time

• SIMT compared to SIMD:
– SIMD requires vector code in each thread

– SIMT allows you to write scalar code per thread
• Vectorization is handled by hardware

• Note:
– All contemporary processors (CPUs and GPUs) are built by

aggregating vector processing units

– Vectorization is needed to get performance on CPUs and GPUs

99

Control Flow

© 2012, NVIDIA 100

if (...)
{
 // then-clause
}
else
{
 // else-clause
}

in
st

ru
ct

io
n

s

Execution within warps is coherent

© 2012, NVIDIA 101

in
st

ru
ct

io
n

s
/

ti
m

e

Warp
(“vector” of threads)

35 34 33 63 62 32 3 2 1 31 30 0

Warp
(“vector” of threads)

Execution diverges within a warp

© 2012, NVIDIA 102

in
st

ru
ct

io
n

s
/

ti
m

e

3 2 1 31 30 0 35 34 33 63 62 32

Possible Performance Limiting Factors

• Raw instruction throughput
– Know the kernel instruction mix
– fp32, fp64, int, mem, transcendentals, etc. have different throughputs

• Refer to the CUDA Programming Guide / Best Practices Guide
• Can examine assembly: use cuobjdump tool provided with CUDA toolkit

– A lot of divergence can “waste” instructions

• Instruction serialization
– Occurs when threads in a warp issue the same instruction in sequence

• As opposed to the entire warp issuing the instruction at once
• Think of it as “replaying” the same instruction for different threads in a warp

– Mostly:
• Shared memory bank conflicts
• Memory accesses that result in multiple transactions (scattered address patterns)

103

Instruction Throughput: Analysis

• Compare achieved instruction throughput to HW capabilities
– Profiler reports achieved throughput as IPC (instructions per clock)
– Peak instruction throughput is documented in the Programming Guide

• Profiler also provides peak fp32 throughput for reference (doesn’t take your instruction mix into
consideration)

• Check for serialization
– Number of replays due to serialization: instructions_issued - instructions_executed
– Profiler reports:

• % of serialization metric (ratio or replays to instructions issued)
• Kepler: counts replays due to various memory access instructions

– A concern if: code is instruction or latency-limited, replay percentage is high

• Warp divergence
– Profiler counters: divergent_branch, branch
– Compare the two to see what percentage diverges

• However, this only counts the branches, not the rest of serialized instructions

104

Instruction Throughput: Optimization

• Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
– Available for a number of math.h functions
– 2-3 bits lower precision, much higher throughput

• Refer to the CUDA Programming Guide for details

– Often a single HW instruction, whereas a non-intrinsic is a SW sequence

• Additional compiler flags that also help performance:
– -ftz=true : flush denormals to 0
– -prec-div=false : faster fp division instruction sequence (some precision loss)
– -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

• Make sure you do fp64 arithmetic only where you mean it:
– fp64 throughput is lower than fp32
– fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

105

Instruction Throughput: Summary

• Analyze:
– Check achieved instruction throughput
– Compare to HW peak (but keep instruction mix in mind)
– Check percentage of instructions due to serialization

• Optimizations:
– Intrinsics, compiler options for expensive operations
– Group threads that are likely to follow same execution path

(minimize warp divergence)
– Minimize memory access replays (SMEM and GMEM)

106

OPTIMIZING FOR KEPLER

© 2012, NVIDIA 107

Kepler Architecture Family

• Two architectures in the family:
– GK104 (Tesla K10, GeForce: GTX690, GTX680, GTX670, ...)

• Note that K10 is 2 GK104 chips on a single board

– GK110 (Tesla K20, ...)

• GK110 has a number of features not in GK104:
– Dynamic parallelism, HyperQ
– More registers per thread, more fp64 throughput
– For full details refer to:

• Kepler Whitepaper
• GTC12 Session 0642: “Inside Kepler”

© 2012, NVIDIA 108

Good News About Kepler Optimization

• The same optimization fundamentals that applied to
Fermi, apply to Kepler
– There are no new fundamentals

• Main optimization considerations:
– Expose sufficient parallelism

• SM is more powerful, so will need more work

– Coalesce memory access
• Exactly the same as on Fermi

– Have coherent control flow within warps
• Exactly the same as on Fermi

© 2012, NVIDIA 109

Level of Parallelism

• Parallelism for memory is most important
– Most codes don’t achieve peak fp throughput because:

• Stalls waiting on memory (latency not completely hidden)
• Execution of non-fp instructions (indexing, control-flow, etc.)
• NOT because of lack of independent fp math

• GK104:
– Compared to Fermi, needs ~2x concurrent accesses per SM to saturate

memory bandwidth
• Memory bandwidth comparable to Fermi
• 8 SMs while Fermi had 16 SMs

– Doesn’t necessarily need twice the occupancy of your Fermi code
• If Fermi code exposed more than sufficient parallelism, increase is less than 2x

© 2012, NVIDIA 110

Kepler SM Improvements for Occupancy

• 2x registers
– Both GK104 and GK110
– 64K registers (Fermi had 32K)
– Code where occupancy is limited by registers will readily achieve higher

occupancy (run more concurrent warps)

• 2x threadblocks
– Both GK104 and GK110
– Up to 16 threadblocks (Fermi had 8)

• 1.33x more threads
– Both GK104 and GK110
– Up to 2048 threads (Fermi had 1536)

© 2012, NVIDIA 111

Increased Shared Memory Bandwidth

• Both GK104 and GK110

• To benefit, code must access 8-byte words

– No changes for double-precision codes

– Single-precision or integer codes should group accesses
into float2, int2 strutures to get the benefit

• Refer to Case Study 6 for a usecase sample

© 2012, NVIDIA 112

SM Improvements Specific to GK110

• More registers per thread
– A thread can use up to 255 registers (Fermi had 63)
– Improves performance for some codes that spilled a lot of registers on

Fermi (or GK104)
• Note that more registers per thread still has to be weighed against lower

occupancy

• Ability to use read-only cache for accessing global memory
– Improves performance for some codes with scattered access patterns,

lowers the overhead due to replays

• Warp-shuffle instruction (tool for ninjas)
– Enables threads in the same warp to exchange values without going

through shared memory

© 2012, NVIDIA 113

Case Study 8: More Registers Per Thread

• TTI RTM code:
– Same as used in Case Study 6
– Can be implemented in 2 or 3 passes

• http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels

• 2-pass approach has fewer accesses to memory, but consumes many registers
– Additional benefit: requires less storage than 3-pass

• 3-pass approach has more accesses to memory, but consumes fewer registers
• Higher order in space -> more registers needed

• 16th order in space:
– Fermi: 3-pass is faster than 2-pass

• 2-pass spills too many registers, which causes extra memory traffic

– GK110: 2-pass is 1.15x faster than 3-pass
• The “large” kernel consumes 96 registers per thread, doesn’t spill
• Can probably be improved further: literally 5 minutes were spent on optimization

© 2012, NVIDIA 114

http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels
http://hpcoilgas.citris-uc.org/stencil-computation-gpu-seismic-migration-isotropic-vti-and-tti-rtm-kernels

Considerations for Dynamic Parallelism

• GPU threads are able to launch work for GPU

– GK110-specific feature

• Same considerations as for launches from CPU

– Same exact considerations for exposing sufficient parallelism
as for “traditional” launches (CPU launches work for GPU)

– A single launch doesn’t have to saturate the GPU:

• GPU can execute up to 32 different kernel launches concurrently

© 2012, NVIDIA 115

In Conclusion

• When programming and optimizing think about:

– Exposing sufficient parallelism

– Coalescing memory accesses

– Having coherent control flow within warps

• Use profiling tools when analyzing performance

– Determine performance limiters first

– Diagnose memory access patterns

© 2012, NVIDIA 116

Questions

© 2012, NVIDIA 117

