
Developing Next-Generation CUDA
Acceleration in Wolfram's Mathematica with
NVIDIA® Nsight™ Visual Studio Edition

Abdul Dakkak
Kernel Developer
Wolfram Research

Sébastien Dominé
Sr. Dir. Developer Tools
NVIDIA

Agenda

 Nsight Visual Studio Edition Update

 CUDA Development in Wolfram’s Mathematica

 The future of Nsight Visual Studio Edition

 Conclusion

NVIDIA® Nsight™ Visual Studio Edition

Software Development Platform for GPU and CPU

Nsight Visual Studio Edition
 for Graphics Developers

 Frame debugger for Direct3D

 HLSL Shader debugger

 Frame profiler for Direct3D

 Application and system trace

Nsight Visual Studio Edition
 for CUDA® Developers

 CUDA debugger

 CUDA memory checker

 Application and system trace

 CUDA profiler

New in Nsight Visual Studio Edition 2.2

 Kepler architecture support

 Fully featured on single GPU systems

— Local CUDA Debugging

— CUDA memory checker

 Warp freeze/thaw run-control

 Debug Kernel without symbols

 SASS and PTX

 New Analysis summary page

What is Mathematica?

 Computational Engine

 Functional, pattern based, procedural, … — everything is

data

 Covers Many Domains All in One Package — no need for

extensions and toolkits

Structure of Mathematica Code Base

Mainly written in C and Mathematica

 Some bits are written in Java

 A separation between the frontend and the kernel into

different processes

 Uses and loads external libraries on demand for certain

operations

 Has a linking mechanism that allows loading C, Java, .Net,

and Python code into the system

 CUDALink is one of those linking mechanisms

Mathematica Frontend and Kernel

Mathematica

Kernel
All computation happens

in the kernel

Mathematica

Frontend
All GUI and visualization

happens here

MathLink

Mathematica Linking Mechanism

Mathematica

Kernel

LibraryLink

 DLL

Function

What is CUDALink?

 A way to load CUDA programs into Mathematica

 Handles all the trivial, repetitive, and sometime error prone

host code that developers have to write

 Allows CUDA programs to benefit from Mathematica's

features and vice versa

What is CUDALink?

Structure of CUDALink

 Written in C, CUDA, and Mathematica

 Uses NVIDIA libraries such as CUBLAS, CUFFT, CURAND, and

Thrust

 Loaded as an external library by the main Mathematica

kernel

 Mathematica Kernel

LibraryLink

 CUDALink

CUDA

Function

CUDALink

Demo: CUDALink Usage

Challenges While Developing CUDALink

 Initially, lack of Nsight and printf

 The initial hardware requirements for Nsight were not easy

to configure (QA, for example, did not have this setup)

 Large code base means that you cannot debug the entire

CUDA code base

Demo: Attaching the CUDA Debugger to a
Mathematica Process

Demo: Profiling the CUDA Code with Nsight

Previous Development Workflow

 Write implementation in C

 Port implementation into CUDA

 Scratch head if something does not work

 Optimize based on knowledge of the hardware

 Write tests to make sure things continue to work

Current Development Workflow

 Write implementation in CUDA

 Debug CUDA implementation

 Memory check CUDA implementation

 Optimize the implementation based on what the profiler

tells you

Pitfalls and Experiences

 A small change in the way we develop CUDA code — the "old

school" way of debugging and profiling

 Initial setup challenges were answered by the

documentation pages

 Enhanced and accelerated our development and QA process

Wish List

 Hard to debug large CUDA files

 Live variable range is short during debugging

 As CUDA projects get larger: the compilation process gets

slower, debugging get harder, and the release binary size

gets larger

 Run static analysis without writing the host code

 Attach debugger to a CUDA function without host code

symbols

The Future for Nsight Visual Studio Edition

 CUDA 5.0 and dynamic kernel debugging

 Support for debugging GPU object linking

 Performance Bottleneck w/ Source code correlation

 Kernel Performance Limiter Analysis

 System trace File I/O

Profiling with source code correlation

Conclusion

 Full-featured CUDA development on a single GPU

 Advanced CUDA debugging with more control

— Attach to process

— CUDA Info and parallel warp pages

 System trace for finding where to focus optimization effort

 Powerful profiling experiments for accurate performance

characterization

Mathematica Presentations

 Mathematica as a Practical Platform for GPU-Accelerated

Finance: Wednesday 5:00PM (S0100)

 GPU Based Numerical Methods in Mathematica: Thursday

14:30 (S0106)

Nsight Visual Studio Edition@GTC’12

 Download

http://developer.nvidia.com/nvidia-nsight

 NVIDIA Nsight Visual Studio Edition Trainings

— Debugging: Tue:2-3pm, 5-6pm - Wed: 2-3pm - Thu: 9-10am, 4-5pm

— Profiling: Tue:3-4pm – Wed: 9-10am, 4-5pm – Thu: 2-3pm

 Nsight Lab

— Tue: 4-5pm – Wed: 10-11am, 3-4pm, 5-6pm - Thu: 10-11am, 3-4pm

 Nsight Visual Studio Edition@NVIDIA Booth/Exhibition Hall

— Tue,Wed: 12-2pm, 6-8pm – Thu: 12-2pm

