Developmg Next Generatlon CUDA/
Acceleration in Wolfram S Mathematvc/;_ Tthaasces
NVIDIA® NSlght “Visual Studio E Edltldn RN

=5, \._
Ve [k\ [J /
Abdul Dakkak Sébastien“Dominé~"
Kernel Developer Sr. Dir. Developer F00ls _x’ N

Wolfram Research NVIDIA

Agenda

= Nsight Visual Studio Edition Update
= CUDA Development in Wolfram’s Mathematica

» The future of Nsight Visual Studio Edition
= Conclusion

NVIDIA® Nsight™ Visual Studio Edition

Software Development Platform for GPU and CPU

0

Microsoft * ’ .
Visual Studio

PARTNER

Nsight Visual Studio Edition

for Graphics Developers

* Frame debugger for Direct3D
= HLSL Shader debugger

* Frame profiler for Direct3D

» Application and system trace

Nsight Visual Studio Edition
for CUDA® Developers

= CUDA debugger
* CUDA memory checker

= Application and system trace
= CUDA profiler

New in Nsight Visual Studio Edition 2.2

= Kepler architecture support

» Fully featured on single GPU systems
— Local CUDA Debugging
— CUDA memory checker

= Warp freeze/thaw run-control

- -

» Debug Kernel without symbols
SASS and PTX

= New Analysis summary page

What is Mathematica?

= Computational Engine

» Functional, pattern based, procedural, ... — everything is
data

= Covers Many Domains All in One Package — no need for
extensions and toolkits

Structure of Mathematica Code Base

* Mainly written in C and Mathematica
= Some bits are written in Java

= A separation between the frontend and the kernel into
different processes

= Uses and loads external libraries on demand for certain
operations

» Has a linking mechanism that allows loading C, Java, .Net,
and Python code into the system

» CUDALink is one of those linking mechanisms

Mathematica Frontend and Kernel

=)

Mathematica Linking Mechanism

What is CUDALink?

= A way to load CUDA programs into Mathematica

= Handles all the trivial, repetitive, and sometime error prone
host code that developers have to write

» Allows CUDA programs to benefit from Mathematica's
features and vice versa

What is CUDALink?

Using Mathematica

%

GPU Kernel
Code

Structure of CUDALiInk

= Written in C, CUDA, and Mathematica

= Uses NVIDIA libraries such as CUBLAS, CUFFT, CURAND, and
Thrust

» | oaded as an external library by the main Mathematica
kernel

Demo: CUDALink Usage

Challenges While Developing CUDALink

= |[nitially, lack of Nsight and printf

» The initial hardware requirements for Nsight were not easy
to configure (QA, for example, did not have this setup)

» Large code base means that you cannot debug the entire
CUDA code base

Demo: Attaching the CUDA Debugger to a
Mathematica Process

Demo: Profiling the CUDA Code with Nsight

Previous Development Workflow

= Write implementation in C

» Port implementation into CUDA

» Scratch head if something does not work

» Optimize based on knowledge of the hardware

» Write tests to make sure things continue to work

Current Development Workflow

= Write implementation in CUDA
» Debug CUDA implementation
» Memory check CUDA implementation

» Optimize the implementation based on what the profiler
tells you

Pitfalls and Experiences

= A small change in the way we develop CUDA code — the "old
school” way of debugging and profiling

» |[nitial setup challenges were answered by the
documentation pages

» Enhanced and accelerated our development and QA process

Wish List

» Hard to debug large CUDA files
= Live variable range is short during debugging

= As CUDA projects get larger: the compilation process gets

slower, debugging get harder, and the release binary size
gets larger

» Run static analysis without writing the host code

» Attach debugger to a CUDA function without host code
symbols

The Future for Nsight Visual Studio Edition

= CUDA 5.0 and dynamic kernel debugging

= Support for debugging GPU object linking

» Performance Bottleneck w/ Source code correlation
= Kernel Performance Limiter Analysis

= System trace File I/0

e

] 4

.

o

Profiling with source code correlation

|E| tesselateNURBSPatches_Keme Grid Dim: Block Dim: {512 1,1} Duration: 14064 ps
File: NURBSTessellationd.cu ~ | View: |Source and SASS -] » LowteHigh 2L ~
- = i =
e Line| Source |
as = = 531 «1D010%¢ @P0 BRA Oxlact; # Ox00001ach 1600 51200 51200 100.0
as 532 /%1008%/ EXIT; 1600 51200 i} Q.0
. 533 /*1D20%/ IADD RS, RS, 0Oxl; 1200 36300 0 0.0
T e =0 G 534 /*1D28%/ MOV RS, RZ; 1200 36300 0 0.0
. 535 /¥1D30%/ ISETP.GE.U32_AND Po, PT, RS, R4, PT; 1200 36300 0 0.0
53 if(u >= kulil & u < kuli+l 29200 833300 162400 192 #ee ERES 1200 36300 36300 100.9
- ceturn i 537 BRA Ox11f£8; g 1200 36300 0 0.0
o 538 IRDD RS, 1200 36300 0 0.0
S return 0; 24k MOV B3, 1200 36300 a 0.0 =
o 540 ISETP.GE.U3Z_AND PO, PT, RS, R4, PT; 1200 36300 i} 0.0 i
a8 541 ERE; 1200 36300 36300 100.0
. 542 ERL 0x1160; 1200 36300 0 oo M
- 543 /* 34000 202800 0 a.0
0l NURESPatch ‘patch = spatches[blockIdx. x]; 1600 51200 0 0o 544 /* 34000 202800 o 0.9 =1
tesselateMURBSPatches_Kemel [CUDA Launch] Drag 2 column header and drop it here to group by that colurmn
P tesselateMUREBSPatches_Kernel [CUDA Kemel] - - - - - - - .
File s e# Y | Instructions Exe W | Thread Instructions Executed Y | Thre ction i | Thread Instructions Predicated Off 7 | Active Mask -
4 Experiment Results -
1 | nu w® 66 178200 0 0.0 |
CUDA Occupancy 7 | nu w?® 66 178200 0 02 I:
4 CUDA Code Correlation 3 | nu w?® 66 34000 202800 0 0.0 Iﬁ. e
CUDA Instruction Count 4 | nu w® 66 34000 202500] 0.0 ll.lll. T . i
5 U cw® &6 3000 202800 0 0.0 Il.lll__._.__
6 U w® e6 34000 202300 0 0.0 Ii iii ; ; Il JIL s =
7 | nu w? 13 34000 202800 0 00 Naamln. e ue] -

Conclusion

» Full-featured CUDA development on a single GPU

» Advanced CUDA debugging with more control
— Attach to process
— CUDA Info and parallel warp pages

System trace for finding where to focus optimization effort

Powerful profiling experiments for accurate performance
characterization

Mathematica Presentations

= Mathematica as a Practical Platform for GPU-Accelerated
Finance: Wednesday 5:00PM (S0100)

» GPU Based Numerical Methods in Mathematica: Thursday
14:30 (S0106)

Nsight Visual Studio Edition@GTC’12

* Download
http://developer.nvidia.com/nvidia-nsight

= NVIDIA Nsight Visual Studio Edition Trainings
— Debugging: Tue:2-3pm, 5-6pm - Wed: 2-3pm - Thu: 9-10am, 4-5pm
— Profiling: Tue:3-4pm - Wed: 9-10am, 4-5pm - Thu: 2-3pm
= Nsight Lab
— Tue: 4-5pm - Wed: 10-11am, 3-4pm, 5-6pm - Thu: 10-11am, 3-4pm
= Nsight Visual Studio Edition@NVIDIA Booth/Exhibition Hall
— Tue,Wed: 12-2pm, 6-8pm - Thu: 12-2pm

