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Nsight Visual Studio Edition

for Graphics Developers

* Frame debugger for Direct3D
= HLSL Shader debugger

* Frame profiler for Direct3D

» Application and system trace




Nsight Visual Studio Edition
for CUDA® Developers

= CUDA debugger
* CUDA memory checker

= Application and system trace
= CUDA profiler




New in Nsight Visual Studio Edition 2.2

= Kepler architecture support

» Fully featured on single GPU systems
— Local CUDA Debugging
— CUDA memory checker

= Warp freeze/thaw run-control

- -

» Debug Kernel without symbols
SASS and PTX

= New Analysis summary page




What is Mathematica?

= Computational Engine

» Functional, pattern based, procedural, ... — everything is
data

= Covers Many Domains All in One Package — no need for
extensions and toolkits




Structure of Mathematica Code Base

* Mainly written in C and Mathematica
= Some bits are written in Java

= A separation between the frontend and the kernel into
different processes

= Uses and loads external libraries on demand for certain
operations

» Has a linking mechanism that allows loading C, Java, .Net,
and Python code into the system

» CUDALink is one of those linking mechanisms




Mathematica Frontend and Kernel
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Mathematica Linking Mechanism




What is CUDALink?

= A way to load CUDA programs into Mathematica

= Handles all the trivial, repetitive, and sometime error prone
host code that developers have to write

» Allows CUDA programs to benefit from Mathematica's
features and vice versa




What is CUDALink?

Using Mathematica

%

GPU Kernel
Code




Structure of CUDALiInk

= Written in C, CUDA, and Mathematica

= Uses NVIDIA libraries such as CUBLAS, CUFFT, CURAND, and
Thrust

» | oaded as an external library by the main Mathematica
kernel




Demo: CUDALink Usage




Challenges While Developing CUDALink

= |[nitially, lack of Nsight and printf

» The initial hardware requirements for Nsight were not easy
to configure (QA, for example, did not have this setup)

» Large code base means that you cannot debug the entire
CUDA code base




Demo: Attaching the CUDA Debugger to a
Mathematica Process




Demo: Profiling the CUDA Code with Nsight




Previous Development Workflow

= Write implementation in C

» Port implementation into CUDA

» Scratch head if something does not work

» Optimize based on knowledge of the hardware

» Write tests to make sure things continue to work




Current Development Workflow

= Write implementation in CUDA
» Debug CUDA implementation
» Memory check CUDA implementation

» Optimize the implementation based on what the profiler
tells you




Pitfalls and Experiences

= A small change in the way we develop CUDA code — the "old
school” way of debugging and profiling

» |[nitial setup challenges were answered by the
documentation pages

» Enhanced and accelerated our development and QA process




Wish List

» Hard to debug large CUDA files
= Live variable range is short during debugging

= As CUDA projects get larger: the compilation process gets

slower, debugging get harder, and the release binary size
gets larger

» Run static analysis without writing the host code

» Attach debugger to a CUDA function without host code
symbols



The Future for Nsight Visual Studio Edition

= CUDA 5.0 and dynamic kernel debugging

= Support for debugging GPU object linking

» Performance Bottleneck w/ Source code correlation
= Kernel Performance Limiter Analysis

= System trace File I/0
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Profiling with source code correlation
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Conclusion

» Full-featured CUDA development on a single GPU

» Advanced CUDA debugging with more control
— Attach to process
— CUDA Info and parallel warp pages

System trace for finding where to focus optimization effort

Powerful profiling experiments for accurate performance
characterization




Mathematica Presentations

= Mathematica as a Practical Platform for GPU-Accelerated
Finance: Wednesday 5:00PM (S0100)

» GPU Based Numerical Methods in Mathematica: Thursday
14:30 (S0106)




Nsight Visual Studio Edition@GTC’12

* Download
http://developer.nvidia.com/nvidia-nsight

= NVIDIA Nsight Visual Studio Edition Trainings
— Debugging: Tue:2-3pm, 5-6pm - Wed: 2-3pm - Thu: 9-10am, 4-5pm
— Profiling: Tue:3-4pm - Wed: 9-10am, 4-5pm - Thu: 2-3pm
= Nsight Lab
— Tue: 4-5pm - Wed: 10-11am, 3-4pm, 5-6pm - Thu: 10-11am, 3-4pm
= Nsight Visual Studio Edition@NVIDIA Booth/Exhibition Hall
— Tue,Wed: 12-2pm, 6-8pm - Thu: 12-2pm




