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Agenda 

► Motivation, requirements and goals 

► Integration of OptiX into the Vires Virtual Test Drive simulation software 

► Advanced material and emitter data descriptions 

► Example sensor model implementations 

► Model validation and verification process 

► Summary and Outlook 
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Motivation 

Growing challenges for testing new Advanced Driver Assistance Systems (ADAS)  

► Increased  number of comfort-, energy-management- and safety-related functions 

► Growing dependency of ADAS-functions on multiple perception sensors 

► Difficulties to record reproducible sensor data for real world scenarios 

E. Roth, T. Calapoglu, et al. 
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Main Objectives  

• Support ADAS testing with computer simulations for realistic multi-sensor data computation  
 

• Validated sensor models as parts of an 

integrated vehicle and environment 

simulation system 
 

• Enable closed-loop simulations in Hardware- and Software-in-the-loop testbeds 

  

• Reproducibility of test scenarios for a wide range of environment and traffic conditions 

E. Roth, T. Calapoglu, et al. 

 Early evaluation of new sensor concepts and ADAS functions 

 Increased test space coverage by combining real and virtual test drives 
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Multi-Sensor Simulation Environment Objectives 

• Simultaneous execution of multiple perception 

sensor emulators with realistic distortion effects 

 

 

 

• Share a common simulation infrastructure 

for sensor data consistency 

• Scenario description 

• Object,  material and emitter (light) data 

• Communication 

• Configuration 
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Sensor Emulator Requirements - Architecture 

• Support the same data formats and interfaces as the real sensor  

E. Roth, T. Calapoglu, et al. 

Simplified integration into the existing ADAS development and testing process 
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Sensor Emulator Requirements – Simulation Variants 

• Support various simulation types in the existing ADAS test toolchain 

E. Roth, T. Calapoglu, et al. 

Toolchain for the integrated development and testing of ADAS functions 

Hardware-in-the-loop Driver-in-the-loop Software-in-the-loop Vehicle-in-the-loop 

virtuell

real Bock, EF-56

virtuell

real Bock, EF-56

ADTF® 
(Automotive Data and Time 

Triggered Framework) 
+ MATLAB® & 

Simulink® + 

slower / faster 

than real-time 
hard real-time soft real-time hard real-time 
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Sensor Emulator Requirements – Level of Realism 

• Extensible architecture regarding refined models 

for a higher level of realism 

 

 

 

• Configurable approximation accuracy and distortion levels 

with a single consistent model 

 

E. Roth, T. Calapoglu, et al. 

Sensor Emulation Data Accuracy 

ideal 

Algo. validation  

(SIL, faster than real-time) 

‘functional realism’ 

ADAS system testing 

(HIL, hard-real-time) 

‘close to reality’ 

Operational-envelope 

testing (SIL, non-real-time) 
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Sensor Emulator Requirements – Physics 

• Particle-, ray- and wave-based physical 

measurement methods shall be approximated 

 

 

 

• Physics-oriented modeling of 

• sensor data acquisition process 

• related systematic and stochastic distortion effects 

• material, surface and emitter properties 

E. Roth, T. Calapoglu, et al. 

Emitter 

Receiver 

Signal propagation 

[Source: Keller, Kolb] 
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Advanced Material and Emitter Description 

Multi-modal sensor simulation requires extended 

material and light source (emitter) descriptions 

• Each material is identified by a unique ID 

• Covering also non-visible light spectrum, e.g. 300 – 1000nm 

• Holding meta data for material/emitter classification, lookup, … 

• Storage of physical properties in form of scalars and textures 

• Support for existing measurement techniques and 
material standards incl. accuracy information 

• Material data records must be extensible 

 

 
E. Roth, T. Calapoglu, et al. 

Unique Material ID 

Parent Material ID = Alloy 

Meta Data 

•Description = „Alloy 85‟ 

•Class: Metal 

•Surface subclass: Coated 

•Measurement standard and accuracy info 

Physical Parameters [Si-Units] 

•Elec. Conductivity = 36.59 *10^6 S/m 

•Surface roughness = 120 um 

Diffuse Reflection Spectrum 

OpenGL Fallback Colors 

Software specific shaders / RT programs 

Measured BRDF/BSDF/BTF 
for visible, infrared, … spectrum 
 

 

 

 

 

Extended data 
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Integration of OptiX and VTD 
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Virtual Test Drive 
• VTD core = simulation environment 

• 3D rendering (image generator) 

• traffic and scenario 

• sound 

• mockup interfaces 

• record/playback 

• event and data handling 

• content creation 

• management of custom modules 

 

• VTD dev = development environment 

• interfaces for 

•run-time data (Run-time Data Bus – RDB) 

•event / control data (Simulation Control 
Protocol – SCP) 

•sensor development 
(using Image Generator v-IG) 

• module development via 

•  library 

•  C++ API 

Task and Data 
Control 

Road  
Designer 

ROD 

Scenario 
Editor 

Traffic 

Sound 3D renderer 
v-IG 

Mockup 

O
p

e
n
 I

n
te

rf
a
c
e
s
 

3
rd

 P
a
rt

y 

C
o
m

p
o
n
e
n
ts

 

Operator 
Station 

Vehicle 
Dynamics 

Configuration 

Driver 
Model 

Dynamics 

Sensors 

Module 
Manager 

Systems 

Mockup 

Systems 
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VTD – Content Creation Toolchain 

IOS 

TaskControl 

Traffic 
v-IG  

(3D renderer) 

Visual 
Database 

Road logic and 
Geometry 

Vehicle  
Dynamics 

Scenario 
Description 

Project 

ROD 
(Road Designer) 

Content Creation 

Scenario 
Editor 

Runtime 

IOS  
(Project Edit Mode) 

Real-time data 

Content data 
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v-IG 

• Open Scene Graph (and OpenGL) based 3D 
renderer 

• Part of VTD but also available as 
a standalone renderer 

• Provides an API 

• Used in driving, train and flight simulators 

• Used in sensor simulation applications 

Sensor image for hardware-in-the-loop simulator (OpenGL) 

Standard day scene (OpenGL) 

HDR night scene with wet road (OpenGL) 
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OptiX plug-in 

• Conversion of OSG scene to OptiX scene 

– Geometry, Materials 

• Synchronizing OSG/OptiX scenes 

– Animations, LOD, Lights 

• Post Processing 

• Real-time data transfer 

 

• C++ API provided for customization 

• New camera models with 
Cuda/C++ 

• Different buffer formats, 
multiple output buffers 

• Custom light sources 

• Building post processing 
pipelines 

• Adding/editing materials 
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Creating the OptiX node graph 

• v-IG loads the scene and creates an OSG scene graph 

• OptiX plug-in translates the OSG scene graph to an OptiX scene graph 

• OptiX specific optimizations during translation 

• Some objects (e.g. Vehicles) loaded and deleted in run-time 

Materials 
Terrain, 

3D models 

OSG scene graph OptiX node graph 

v-IG 

OptiX plug-in translates  

the scene graph to  

OptiX node graph 
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Material management 

Assignments Materials 

IR 

Radar 

IR 

Radar 

• Associates materials with 

objects 

• Grouped according to 

wavelength and/or sensor 

type 

 

• XML material definitions 

• Grouped according to 

wavelength and/or sensor 

type 

 

Scene Objects 

• Identified by textures or 

ID„s 

• v-IG assigns the materials 

to OSG scene graph nodes 

• OptiX plug-in creates OptiX 

materials and puts into the 

material buffer 
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Material Management 

• Material definitions in XML 

 

• Common materials for rasterizer and 

ray-tracer 

– Shader params will be GLSL 

uniforms in rasterizer and OptiX 

variables in ray-tracer 

– Rasterizer loads GLSL programs, 

OptiX ptx files 

 

• New materials can be derived from 

existing ones 

Sample material decleration 

<Material name="Audi_PhantomBlack_RT" > 

  <GeneralParams ambient="0.01 0.01 0.01 1.0"  

                 diffuse="0.02 0.02 0.02 1.0"  

                 specular="1.0 1.0 1.0 1.0" 

                 emissive="0 0 0 1" shininess="100" /> 

  <ShaderParams> 

    <Param type="vec4" name="u_genericConfig" value="0.2 0.5 1 1" /> 

  </ShaderParams> 

 

  <FragmentShader file="../data/Shaders/vehicleBodyFrag.glsl" /> 

  <VertexShader file="../data/Shaders/vehicleBodyVert.glsl" /> 

  <OptiXHitProgram file="../data/Cuda/vehicleBody.ptx" /> 

 

</Material> 

 

Copy and override material properties 

<Material name="Default_Rim_RT" copy="Default_Rim" > 

  <OptiXHitProgram file="../data/Cuda/chrom.ptx" /> 

</Material> 
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Synchronization of scenes 

OSG scene graph OptiX node graph 

v-IG 

OptiX plug-in 

synchronizes the 

graphs 

continuously 

Animation data 

over network 

• Camera 

position 

• Positions and 

orientation of 

objects 

• Light positions  

• Etc. 

 

 

v-IG 

manipulates 

the scene 

graph to 

animate the 

objects Animation  

routines 

• v-IG manipulates OSG scene graph nodes (e.g. DOF´s) for animations 

• LOD nodes are automatically updated by OSG 

• OptiX plug-in monitors function nodes and synchronizes their OptiX 

counterparts 

Simulation 
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Lights and emitters 

v-IG 

OptiX plug-in 

synchronizes the 

lists continuously 

Animation data 

over network 

• Positions and 

orientation of 

objects 

• Light positions  

 

 

 

Update lights that 

are parts of 

simulation entities 

(e.g. Car 

headlights) Object 

animation 

routines 
Simulation 

v-IG 
Lights 

Update lights that 

are created and 

managed by 

external 

applications 

OptiX light buffer 

Light 

control 

• v-IG creates and manages a list of lights 

– Some lights are generated automatically with the information 

stored in the terrain and models (car headlights, street lamps) 

– Communication protocol allows for creating and controlling lights 

externally 

• OptiX plug-in synchronizes OptiX light buffer with v-IG lights 

• Lights can represent any type of emitter 
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Post processing 

• Rendered buffers can be fed into v-IG post 
processing pipeline 

– Programmable through API 

– Post processing with GLSL shaders 

– 32 bit floating point 

• Motivations 

– Bloom 

– Noise 

– Tone mapping 

– Etc. 

 

 

OptiX plug-in 

32-bit float 

OptiX  output 

buffer 

32-bit float 

OpenGL  

texture 

... 

Post processing step 1 

32-bit float 

OpenGL  

texture 

Post processing step n 

Tone mapping and blooming 
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Real-time data transfer 

• Rendered buffers are made available to external applications 

• Shared memory or network 

• Producing data for hardware-in-the-loop and software-in-the-loop simulations 

RAM 

v-IG + OptiX 

Video 

RAM 

32-bit float 

OptiX  output 

buffer 

32-bit OpenGL 

texture 

32-bit OpenGL 

texture 

... 

P
o

st p
ro

ce
ssin

g
 

User application 

Shared 

Memory Other 

workstation(s)  

or 

sensor hardware 

 

 

Network 
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Sensor Model Examples 
 

 using OptiX + VTD 



25 

Photonic Mixing Device (PMD) Sensor Model 

• The PMD-sensor uses the Time-of-Flight principle 

for measuring intensity and depth data of a 3D-scene 

with modulated infrared (IR) light 

 

• Important systematic and stochastic distortion effects 

• non-ambiguity range 

• extraneous light sensitivity 

• “flying pixels”, motion blur 

 

• Three-step sensor data simulation  

 

E. Roth, T. Calapoglu, et al. 

[Source: Keller, Kolb] 

colorized depth-image 
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PMD Sensor Model 

• Approximation techniques in the current PMD sensor emulator 

• Multiple rays per pixel with stratified sampling 

 

• Simulate the angle-dependent emission characteristics of 

the modulated IR-light source based on Radiometry measurements 

 

• Phong reflection model in combination with 

measured IR-material reflection values 

 

 

E. Roth, T. Calapoglu, et al. 
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Ultrasonic Sensor Model 

• Currently: ideal acoustic wave propagation model  

 

 

• Modeling requirements 

• Computation of primary-, secondary and cross-echo 

• Efficient computation of up to 20 ultrasonic sensors 

on a single GPU 

• Consideration of target object material class (e.g. vegetation)  

E. Roth, T. Calapoglu, et al. 

16 circularly-arranged ultrasonic sensor  „depth maps“  simultaneously rendered with OptiX  

Test scene in MATLAB 
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Sensor Emulator Validation and Verification Stages 

Real Sensor System 

Raw data 

Processing 

Objectification 

Algorithms 

 Sensor test bench 

 Real test drive 

 Issue recordings DB 

OptiX + ADTF 

Sensor Emulator 

Raw data 

Generation 

Objectification 

Algorithms 

MATLAB + ADTF 

Sensor Emulator 

Raw data 

Generation 

Objectification 

Algorithms 

Real-time capable 

 x-in-the-loop variants 

Non-real-time, 

high fidelity 

 MATLAB ray-tracer for 

raw data generation 

Comparison 

based on static + dyn. 

description of 

„analytical scenes“ 

using XML 

  

Comparison 

based on reference 

data & virtual 

scene generation 

E. Roth, T. Calapoglu, et al. 

1. Validation 
Prototypical 

Testing 

2. Verification 
Testing with 

real sensor data 
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Sensor Emulator Validation and Verification Toolchain 

MATLAB 

 

ADTF 

Sensor Objectification Algorithms Sensor Objectification Algorithms 

ADAS Algorithms ADAS Algorithms 

Real sensor data recordings 

incl. reference- and scenario-data 

real synth. 
ground- 

truth 

scenario#N: per frame data 

Sensor-Plugin 

OptiX - API 
v-IG 

Vehicle Dynamics 

Traffic 
Material Objects 

… 

Simulink 

Master Control Unit 

 

Closed-loop Model 

S
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state data 

raw data 

actuator 

data 

offline data comparison 

real synth. 
ground- 

truth 

scenario#1: per frame data 
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Summary 

► We showed our approach for supporting ADAS algorithm and function testing 

by using Virtual Test Drive and OptiX for multi-sensor data simulation 

 

► Related requirements and implemented concepts for realistic multi-sensor simulation 

► Physics-oriented sensor modeling using OptiX 

► A common sensor-model simulation infrastructure 

► Advanced material and emitter specifications 

► Validation and verification process 

 

► Ray-tracing with OptiX seems to be a reasonable 

platform. However, we are just at the beginning … 

 
E. Roth, T. Calapoglu, et al. 

AUDI ADAS  Demonstrator 
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Outlook 

Challenges to be tackled in the future regarding … 

► A standard for multi-spectral material and emitter specifications 

► Simulation software independent description and identification scheme 

► Physical property handling of materials and emitters, e.g. for wavelengths 300 – 1000nm 

► Support for different measurement data formats and standards 

 

► OptiX 

► Support for large scenarios (1000x of objects, 100x materials, 10x sensor models, …) 

► Improved multi-GPU scalability for 60 Hz and higher 

► Improved OptiX debugging, profiling and optimization tools 

 

 

E. Roth, T. Calapoglu, et al. 
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Vielen Dank. 

E. Roth, T. Calapoglu, et al. 

Get in touch with us, if you are 

also using OptiX for sensor simulation! 

Contact: 

Erwin Roth, Technische Universität München 

erwin.roth@in.tum.de 

Tugkan Calapoglu, Vires Simulationstechnologie GmbH 

tugkan@vires.com 

 

Thank you very much. 
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BACKUP 

E. Roth, T. Calapoglu, et al. 
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Why was NVIDIA OptiX selected? 

• Since Intel‟s Larrabee was never released ;-) 

 

 

• Programmability and Flexibility of OptiX‟s Ray Tracing pipeline 

• Customizable Ray Tracing pipeline 

• Focus on mathematical model rather than 3D programming 

• Many core, multi-GPU scalability 

• Availability for different platforms 

 

 

• AUDI was already using the Virtual Test Drive (VTD) simulation system 

• We decided to extend the OpenSceneGraph-based 3D-renderer of VTD with an OptiX-plugin 

• Allows us to reuse most of the existing rendering and simulation infrastructure 

 

 

 

E. Roth, T. Calapoglu, et al. 

[Source: NVIDIA] 
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XML-Scene Data Interchange Format 

• File format for OptiX node graphs 

– XML based format 

– Easily readable and editable 

– C++ library for loading/saving 

– Can be integrated to other 
software 

• Motivations 

– Sensor model validation 

– Debugging 

 E. Roth, T. Calapoglu, et al. 
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Integrated Material Handling 

 

 

 

E. Roth, T. Calapoglu, et al. 

CAD System 

Design of geometry 

 Initial material 

assignment 

Manufacturing 

Organization-wide 

Advanced Material + 

Emitter DB 

with GUMID 

 

Advanced Material 
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with GUMID 
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Measurement Labs 

Material  

translator 

PDM System 

 Central data 
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Data 
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Simulation 
VTD, FEM-crash, -thermo, … 

GUMID concept based on 

Gerd Sussner, RTT AG 
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Multi-Sensor Simulation Material pre-processing Pipeline 

 

 

 

 

 

Offline 

pre-processed 

material +  

emitter data 

-> optimized for 

simulation engine 

 

 

 

Test 

Scenario 

Simulation 

Environment Vendor 

Material + Emitter DB 

 

Level: 

Sim.  

Environment 

MA 

assignment 

table 

Geometry 

data incl. 

geometry  IDs 

 

Road- 

surface 

model 

 

Level: 

Organization 

MA 

assignment 

table 

Organization-wide 

Advanced Material + 

Emitter DB 

 

Level: 

Test Scenario 

MA 

assignment 

table 

Level: 

Sensor Model 

MA 

assignment 

table 

Optimized polygon vehicle meta models 

High polygon vehicle models 

 

 

Offline 

pre-processed 

Vehicle Models 

 

 

Offline 

pre-processing 

stage 

Simulator 

Environment 

Advanced 

Material + Emitter 

Reference DB 

 
E. Roth, T. Calapoglu, et al. 



38 

Advanced Emitter Description 

• Simulating interference effects on sensors requires models 

of ego- and extraneous-emitters 

 

• Examples for emitters: 

• Vehicle headlights, traffic lights, street lamps 

• Emitters of active sensors (RADAR, Infrared light source, …) 

• Car2X-Transmitters 

 

• Related emission characteristics should be stored in physically 

measurable SI units using Radiometry in order to not cover 

the visible light spectrum only 

 

• The specific emitter characteristics should be stored in an  

organization-wide database with a unique emitter ID 

E. Roth, T. Calapoglu, et al. 

Unique Emitter ID 

Meta Data 

•Brief description 

•Class: ‚Vehicle Headlight„ 

•Emission spectrum: min, max 

•State flags 

•Number of sub-emitters: 2 

•Sub-Emitter1 

•Position, Orientation 
relative to Ref. Coord. Sys. 

•Number of state profiles = 3 

•State-Profile1 

•Emission map Format 

•Emission map data 

•State-Profile2 

•… 

•Sub-Emitter2 

Parent Emitter ID =  

OpenGL fallback 
illumination model 

•Frustum data 

•Phong intensity data 

•Attenuation 


