
NVIDIA GTC 2012, San Jose

Advanced Driver Assistance System
Testing using OptiX

2

Advanced Driver Assistance System Testing using OptiX

Erwin Roth

Robotics and Embedded Systems, Technischen Universität München

Tugkan Calapoglu, Holger Helmich

Vires Simulationstechnologie GmbH, Bad Aibling

Kilian v. Neumann-Cosel

Automotive Safety Technologies GmbH, Ingolstadt

Marc-Oliver Fischer

Department for Vehicle Safety Sensor Algorithms, AUDI AG, Ingolstadt

Andreas Kern

Audi Electronics Venture GmbH, Ingolstadt

Andreas Heider, Alois Knoll

Robotics and Embedded Systems, Technische Universität München

E. Roth, T. Calapoglu, et al.

3

Agenda

► Motivation, requirements and goals

► Integration of OptiX into the Vires Virtual Test Drive simulation software

► Advanced material and emitter data descriptions

► Example sensor model implementations

► Model validation and verification process

► Summary and Outlook

E. Roth, T. Calapoglu, et al.

4

Motivation

Growing challenges for testing new Advanced Driver Assistance Systems (ADAS)

► Increased number of comfort-, energy-management- and safety-related functions

► Growing dependency of ADAS-functions on multiple perception sensors

► Difficulties to record reproducible sensor data for real world scenarios

E. Roth, T. Calapoglu, et al.

0

10

20

30

2012 2013 2014 2015 2016 2017

Forecast: 300% increase in shipped ADAS units [Mio.]

Source: iSuppli

5

Main Objectives

• Support ADAS testing with computer simulations for realistic multi-sensor data computation

• Validated sensor models as parts of an

integrated vehicle and environment

simulation system

• Enable closed-loop simulations in Hardware- and Software-in-the-loop testbeds

• Reproducibility of test scenarios for a wide range of environment and traffic conditions

E. Roth, T. Calapoglu, et al.

 Early evaluation of new sensor concepts and ADAS functions

 Increased test space coverage by combining real and virtual test drives

6

Multi-Sensor Simulation Environment Objectives

• Simultaneous execution of multiple perception

sensor emulators with realistic distortion effects

• Share a common simulation infrastructure

for sensor data consistency

• Scenario description

• Object, material and emitter (light) data

• Communication

• Configuration

E. Roth, T. Calapoglu, et al.

7

Sensor Emulator Requirements - Architecture

• Support the same data formats and interfaces as the real sensor

E. Roth, T. Calapoglu, et al.

Simplified integration into the existing ADAS development and testing process

8

Sensor Emulator Requirements – Simulation Variants

• Support various simulation types in the existing ADAS test toolchain

E. Roth, T. Calapoglu, et al.

Toolchain for the integrated development and testing of ADAS functions

Hardware-in-the-loop Driver-in-the-loop Software-in-the-loop Vehicle-in-the-loop

virtuell

real Bock, EF-56

virtuell

real Bock, EF-56

ADTF®
(Automotive Data and Time

Triggered Framework)
+ MATLAB® &

Simulink® +

slower / faster

than real-time
hard real-time soft real-time hard real-time

9

Sensor Emulator Requirements – Level of Realism

• Extensible architecture regarding refined models

for a higher level of realism

• Configurable approximation accuracy and distortion levels

with a single consistent model

E. Roth, T. Calapoglu, et al.

Sensor Emulation Data Accuracy

ideal

Algo. validation

(SIL, faster than real-time)

‘functional realism’

ADAS system testing

(HIL, hard-real-time)

‘close to reality’

Operational-envelope

testing (SIL, non-real-time)

10

Sensor Emulator Requirements – Physics

• Particle-, ray- and wave-based physical

measurement methods shall be approximated

• Physics-oriented modeling of

• sensor data acquisition process

• related systematic and stochastic distortion effects

• material, surface and emitter properties

E. Roth, T. Calapoglu, et al.

Emitter

Receiver

Signal propagation

[Source: Keller, Kolb]

11

Advanced Material and Emitter Description

Multi-modal sensor simulation requires extended

material and light source (emitter) descriptions

• Each material is identified by a unique ID

• Covering also non-visible light spectrum, e.g. 300 – 1000nm

• Holding meta data for material/emitter classification, lookup, …

• Storage of physical properties in form of scalars and textures

• Support for existing measurement techniques and
material standards incl. accuracy information

• Material data records must be extensible

E. Roth, T. Calapoglu, et al.

Unique Material ID

Parent Material ID = Alloy

Meta Data

•Description = „Alloy 85‟

•Class: Metal

•Surface subclass: Coated

•Measurement standard and accuracy info

Physical Parameters [Si-Units]

•Elec. Conductivity = 36.59 *10^6 S/m

•Surface roughness = 120 um

Diffuse Reflection Spectrum

OpenGL Fallback Colors

Software specific shaders / RT programs

Measured BRDF/BSDF/BTF
for visible, infrared, … spectrum

Extended data

12

Integration of OptiX and VTD

13

Virtual Test Drive
• VTD core = simulation environment

• 3D rendering (image generator)

• traffic and scenario

• sound

• mockup interfaces

• record/playback

• event and data handling

• content creation

• management of custom modules

• VTD dev = development environment

• interfaces for

•run-time data (Run-time Data Bus – RDB)

•event / control data (Simulation Control
Protocol – SCP)

•sensor development
(using Image Generator v-IG)

• module development via

• library

• C++ API

Task and Data
Control

Road
Designer

ROD

Scenario
Editor

Traffic

Sound 3D renderer
v-IG

Mockup

O
p

e
n
 I

n
te

rf
a
c
e
s

3
rd

 P
a
rt

y

C
o
m

p
o
n
e
n
ts

Operator
Station

Vehicle
Dynamics

Configuration

Driver
Model

Dynamics

Sensors

Module
Manager

Systems

Mockup

Systems

14

VTD – Content Creation Toolchain

IOS

TaskControl

Traffic
v-IG

(3D renderer)

Visual
Database

Road logic and
Geometry

Vehicle
Dynamics

Scenario
Description

Project

ROD
(Road Designer)

Content Creation

Scenario
Editor

Runtime

IOS
(Project Edit Mode)

Real-time data

Content data

15

v-IG

• Open Scene Graph (and OpenGL) based 3D
renderer

• Part of VTD but also available as
a standalone renderer

• Provides an API

• Used in driving, train and flight simulators

• Used in sensor simulation applications

Sensor image for hardware-in-the-loop simulator (OpenGL)

Standard day scene (OpenGL)

HDR night scene with wet road (OpenGL)

16

OptiX plug-in

• Conversion of OSG scene to OptiX scene

– Geometry, Materials

• Synchronizing OSG/OptiX scenes

– Animations, LOD, Lights

• Post Processing

• Real-time data transfer

• C++ API provided for customization

• New camera models with
Cuda/C++

• Different buffer formats,
multiple output buffers

• Custom light sources

• Building post processing
pipelines

• Adding/editing materials

17

Creating the OptiX node graph

• v-IG loads the scene and creates an OSG scene graph

• OptiX plug-in translates the OSG scene graph to an OptiX scene graph

• OptiX specific optimizations during translation

• Some objects (e.g. Vehicles) loaded and deleted in run-time

Materials
Terrain,

3D models

OSG scene graph OptiX node graph

v-IG

OptiX plug-in translates

the scene graph to

OptiX node graph

18

Material management

Assignments Materials

IR

Radar

IR

Radar

• Associates materials with

objects

• Grouped according to

wavelength and/or sensor

type

• XML material definitions

• Grouped according to

wavelength and/or sensor

type

Scene Objects

• Identified by textures or

ID„s

• v-IG assigns the materials

to OSG scene graph nodes

• OptiX plug-in creates OptiX

materials and puts into the

material buffer

19

Material Management

• Material definitions in XML

• Common materials for rasterizer and

ray-tracer

– Shader params will be GLSL

uniforms in rasterizer and OptiX

variables in ray-tracer

– Rasterizer loads GLSL programs,

OptiX ptx files

• New materials can be derived from

existing ones

Sample material decleration

<Material name="Audi_PhantomBlack_RT" >

 <GeneralParams ambient="0.01 0.01 0.01 1.0"

 diffuse="0.02 0.02 0.02 1.0"

 specular="1.0 1.0 1.0 1.0"

 emissive="0 0 0 1" shininess="100" />

 <ShaderParams>

 <Param type="vec4" name="u_genericConfig" value="0.2 0.5 1 1" />

 </ShaderParams>

 <FragmentShader file="../data/Shaders/vehicleBodyFrag.glsl" />

 <VertexShader file="../data/Shaders/vehicleBodyVert.glsl" />

 <OptiXHitProgram file="../data/Cuda/vehicleBody.ptx" />

</Material>

Copy and override material properties

<Material name="Default_Rim_RT" copy="Default_Rim" >

 <OptiXHitProgram file="../data/Cuda/chrom.ptx" />

</Material>

20

Synchronization of scenes

OSG scene graph OptiX node graph

v-IG

OptiX plug-in

synchronizes the

graphs

continuously

Animation data

over network

• Camera

position

• Positions and

orientation of

objects

• Light positions

• Etc.

v-IG

manipulates

the scene

graph to

animate the

objects Animation

routines

• v-IG manipulates OSG scene graph nodes (e.g. DOF´s) for animations

• LOD nodes are automatically updated by OSG

• OptiX plug-in monitors function nodes and synchronizes their OptiX

counterparts

Simulation

21

Lights and emitters

v-IG

OptiX plug-in

synchronizes the

lists continuously

Animation data

over network

• Positions and

orientation of

objects

• Light positions

Update lights that

are parts of

simulation entities

(e.g. Car

headlights) Object

animation

routines
Simulation

v-IG
Lights

Update lights that

are created and

managed by

external

applications

OptiX light buffer

Light

control

• v-IG creates and manages a list of lights

– Some lights are generated automatically with the information

stored in the terrain and models (car headlights, street lamps)

– Communication protocol allows for creating and controlling lights

externally

• OptiX plug-in synchronizes OptiX light buffer with v-IG lights

• Lights can represent any type of emitter

22

Post processing

• Rendered buffers can be fed into v-IG post
processing pipeline

– Programmable through API

– Post processing with GLSL shaders

– 32 bit floating point

• Motivations

– Bloom

– Noise

– Tone mapping

– Etc.

OptiX plug-in

32-bit float

OptiX output

buffer

32-bit float

OpenGL

texture

...

Post processing step 1

32-bit float

OpenGL

texture

Post processing step n

Tone mapping and blooming

23

Real-time data transfer

• Rendered buffers are made available to external applications

• Shared memory or network

• Producing data for hardware-in-the-loop and software-in-the-loop simulations

RAM

v-IG + OptiX

Video

RAM

32-bit float

OptiX output

buffer

32-bit OpenGL

texture

32-bit OpenGL

texture

...

P
o

st p
ro

ce
ssin

g

User application

Shared

Memory Other

workstation(s)

or

sensor hardware

Network

24

Sensor Model Examples

 using OptiX + VTD

25

Photonic Mixing Device (PMD) Sensor Model

• The PMD-sensor uses the Time-of-Flight principle

for measuring intensity and depth data of a 3D-scene

with modulated infrared (IR) light

• Important systematic and stochastic distortion effects

• non-ambiguity range

• extraneous light sensitivity

• “flying pixels”, motion blur

• Three-step sensor data simulation

E. Roth, T. Calapoglu, et al.

[Source: Keller, Kolb]

colorized depth-image

26

PMD Sensor Model

• Approximation techniques in the current PMD sensor emulator

• Multiple rays per pixel with stratified sampling

• Simulate the angle-dependent emission characteristics of

the modulated IR-light source based on Radiometry measurements

• Phong reflection model in combination with

measured IR-material reflection values

E. Roth, T. Calapoglu, et al.

27

Ultrasonic Sensor Model

• Currently: ideal acoustic wave propagation model

• Modeling requirements

• Computation of primary-, secondary and cross-echo

• Efficient computation of up to 20 ultrasonic sensors

on a single GPU

• Consideration of target object material class (e.g. vegetation)

E. Roth, T. Calapoglu, et al.

16 circularly-arranged ultrasonic sensor „depth maps“ simultaneously rendered with OptiX

Test scene in MATLAB

28

Sensor Emulator Validation and Verification Stages

Real Sensor System

Raw data

Processing

Objectification

Algorithms

 Sensor test bench

 Real test drive

 Issue recordings DB

OptiX + ADTF

Sensor Emulator

Raw data

Generation

Objectification

Algorithms

MATLAB + ADTF

Sensor Emulator

Raw data

Generation

Objectification

Algorithms

Real-time capable

 x-in-the-loop variants

Non-real-time,

high fidelity

 MATLAB ray-tracer for

raw data generation

Comparison

based on static + dyn.

description of

„analytical scenes“

using XML

Comparison

based on reference

data & virtual

scene generation

E. Roth, T. Calapoglu, et al.

1. Validation
Prototypical

Testing

2. Verification
Testing with

real sensor data

29

Sensor Emulator Validation and Verification Toolchain

MATLAB

ADTF

Sensor Objectification Algorithms Sensor Objectification Algorithms

ADAS Algorithms ADAS Algorithms

Real sensor data recordings

incl. reference- and scenario-data

real synth.
ground-

truth

scenario#N: per frame data

Sensor-Plugin

OptiX - API
v-IG

Vehicle Dynamics

Traffic
Material Objects

…

Simulink

Master Control Unit

Closed-loop Model

S
h

a
re

d
 M

e
m

o
ry

 o
r

 N

e
tw

o
rk

state data

raw data

actuator

data

offline data comparison

real synth.
ground-

truth

scenario#1: per frame data

E. Roth, T. Calapoglu, et al.

30

Summary

► We showed our approach for supporting ADAS algorithm and function testing

by using Virtual Test Drive and OptiX for multi-sensor data simulation

► Related requirements and implemented concepts for realistic multi-sensor simulation

► Physics-oriented sensor modeling using OptiX

► A common sensor-model simulation infrastructure

► Advanced material and emitter specifications

► Validation and verification process

► Ray-tracing with OptiX seems to be a reasonable

platform. However, we are just at the beginning …

E. Roth, T. Calapoglu, et al.

AUDI ADAS Demonstrator

31

Outlook

Challenges to be tackled in the future regarding …

► A standard for multi-spectral material and emitter specifications

► Simulation software independent description and identification scheme

► Physical property handling of materials and emitters, e.g. for wavelengths 300 – 1000nm

► Support for different measurement data formats and standards

► OptiX

► Support for large scenarios (1000x of objects, 100x materials, 10x sensor models, …)

► Improved multi-GPU scalability for 60 Hz and higher

► Improved OptiX debugging, profiling and optimization tools

E. Roth, T. Calapoglu, et al.

32

Vielen Dank.

E. Roth, T. Calapoglu, et al.

Get in touch with us, if you are

also using OptiX for sensor simulation!

Contact:

Erwin Roth, Technische Universität München

erwin.roth@in.tum.de

Tugkan Calapoglu, Vires Simulationstechnologie GmbH

tugkan@vires.com

Thank you very much.

33

BACKUP

E. Roth, T. Calapoglu, et al.

34

Why was NVIDIA OptiX selected?

• Since Intel‟s Larrabee was never released ;-)

• Programmability and Flexibility of OptiX‟s Ray Tracing pipeline

• Customizable Ray Tracing pipeline

• Focus on mathematical model rather than 3D programming

• Many core, multi-GPU scalability

• Availability for different platforms

• AUDI was already using the Virtual Test Drive (VTD) simulation system

• We decided to extend the OpenSceneGraph-based 3D-renderer of VTD with an OptiX-plugin

• Allows us to reuse most of the existing rendering and simulation infrastructure

E. Roth, T. Calapoglu, et al.

[Source: NVIDIA]

35

XML-Scene Data Interchange Format

• File format for OptiX node graphs

– XML based format

– Easily readable and editable

– C++ library for loading/saving

– Can be integrated to other
software

• Motivations

– Sensor model validation

– Debugging

 E. Roth, T. Calapoglu, et al.

36

Integrated Material Handling

E. Roth, T. Calapoglu, et al.

CAD System

Design of geometry

 Initial material

assignment

Manufacturing

Organization-wide

Advanced Material +

Emitter DB

with GUMID

Advanced Material

Reference DB

with GUMID

Material

Measurement Labs

Material

translator

PDM System

 Central data

management

Geometry

Data

+

Global

Unique

Material ID

(GUMID)
High End Visualization
RTTDeltagen, Maya, …

M
a

te
ri

a
l

tr
a

n
sl

a
to

r

M
a

te
ri

a
l

tr
a

n
sl

a
to

r

Simulation
VTD, FEM-crash, -thermo, …

GUMID concept based on

Gerd Sussner, RTT AG

37

Multi-Sensor Simulation Material pre-processing Pipeline

Offline

pre-processed

material +

emitter data

-> optimized for

simulation engine

Test

Scenario

Simulation

Environment Vendor

Material + Emitter DB

Level:

Sim.

Environment

MA

assignment

table

Geometry

data incl.

geometry IDs

Road-

surface

model

Level:

Organization

MA

assignment

table

Organization-wide

Advanced Material +

Emitter DB

Level:

Test Scenario

MA

assignment

table

Level:

Sensor Model

MA

assignment

table

Optimized polygon vehicle meta models

High polygon vehicle models

Offline

pre-processed

Vehicle Models

Offline

pre-processing

stage

Simulator

Environment

Advanced

Material + Emitter

Reference DB

E. Roth, T. Calapoglu, et al.

38

Advanced Emitter Description

• Simulating interference effects on sensors requires models

of ego- and extraneous-emitters

• Examples for emitters:

• Vehicle headlights, traffic lights, street lamps

• Emitters of active sensors (RADAR, Infrared light source, …)

• Car2X-Transmitters

• Related emission characteristics should be stored in physically

measurable SI units using Radiometry in order to not cover

the visible light spectrum only

• The specific emitter characteristics should be stored in an

organization-wide database with a unique emitter ID

E. Roth, T. Calapoglu, et al.

Unique Emitter ID

Meta Data

•Brief description

•Class: ‚Vehicle Headlight„

•Emission spectrum: min, max

•State flags

•Number of sub-emitters: 2

•Sub-Emitter1

•Position, Orientation
relative to Ref. Coord. Sys.

•Number of state profiles = 3

•State-Profile1

•Emission map Format

•Emission map data

•State-Profile2

•…

•Sub-Emitter2

Parent Emitter ID =

OpenGL fallback
illumination model

•Frustum data

•Phong intensity data

•Attenuation

