Efficient k-NN Search Algorithms on GPUs

Nikos Sismanis¹ Nikos Pitsianis^{1,2} Xiaobai Sun²

Dept. ECE Aristotle University, Greece Dept. CS Duke University, USA

May 15, 2012

Outline

- Motivational Applications
- Problem Statement
- State-of-the-Art Solutions
- Qualitative Performance Analysis
- Quantitative Performance Analysis : Placing Landmarks
- Multistage Streaming: Planning & Tuning

KNN search: Primitive and Prevalent Operation

Queries for most matching ones in a large and high dimensional data space/corpus, according to a well defined measure

More applications with increased data acquisition for

- > machine learning and modeling
- > pattern matching and (speech, image) recognition
- filtering or localization in data analysis & mining

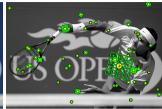
Facilitating various research areas: computer/machine vision, computer-human interactions, computational imaging, geometry, computational statistics

KNN Search for Image Queries

¹D. G. Lowe, Inter. J. Comp. Vis., 2004

²http://www.rocq.inria.fr/imedia/belga-logo.html

KNN Search for Image Queries



KNN search in SIFT feature space for image corpus & queries ¹

- > Preprocessed feature vectors for corpus images
- Extraction of feature vectors for query images/subimages²
- → High dimensional feature space (long feature vectors)
- \succ Similarity score, correlation or distance function over the space
- > KNN search to locate close matches for further classification

¹D. G. Lowe, Inter. J. Comp. Vis., 2004

²http://www.rocq.inria.fr/imedia/belga-logo.html

Fast KNN Search: Other Applications

The computation of the nearest neighbor for the purpose of feature matching is the most time-consuming part of the complete recognition and localization algorithm.

P. Azad, IROS, 2009

Fast KNN search will expedite

- Collaborative filtering x. Luo et al., Inter. J. Digit. Content Tech. Appl., 2011
- ▷ GIS-moving objects in road networks c. Shahabi et al., SIGSPATIAL GIS, 2002
- Network intrusion detection L. Kuang and M. Zulkernine, ACM SAC, 2008

Outline

- Motivational Applications
- Problem Statement
- State-of-the-Art Solutions
- Qualitative Performance Analysis
- Quantitative Performance Analysis: Placing Landmarks
- Multistage Streaming: Planning & Tuning

The KNN Search Problem

Problem Statement

To each and every query, locate k nearest neighbors, according to a score function, among n corpus data points in a d-dim space

d: the dimensionality of the search space such as the length of the SIFT feature vectors

n: the number of corpus data points to query from

q: the number of query points

k: the number of nearest neighbors to locate for each query

Outline

- Motivational Applications
- Problem Statemen
- 3 State-of-the-Art Solutions
- Qualitative Performance Analysis
- Quantitative Performance Analysis: Placing Landmarks
- Multistage Streaming: Planning & Tuning

State-of-the-Art Solutions

Typical solution components

- Search hierarchy for rapid elimination of far neighbors
- Exact KNN search in a corpus of reduced size n
 - \succ linear in k and n
- Approximate KNN search

³J. L. Bentley, Comm. ACM, 1975

⁴S. Omohundro, Inter. Comp. Sci. Inst., TR, 1989

⁵ J. Uhlmann, Info. Proc. Lett., 1991

⁶P. Indvk, 30-th ACM STOC, 1999

State-of-the-Art Solutions

More to be desired

- > Synchronization on SIMD/SIMT processors such as GPUs
- ▷ Throughput rate for multiple queries
- > Autotuning of performance
- ▷ Benchmarking at different integration scopes

KNN Search on GPUs: some other works

DataSet	Alg	Speedup		Parameter range			
(references)		Х	base	n	d	k	q
kdd-cup ⁷	exact	50	CPU	262,144	65	7	12,000
uci adult ⁸	exact	15	ANN	30,956	123	16	1,605
inria holidays ⁹	exact	64	ANN	65,536	128	20	1,024
nasa images ¹⁰	exact	2	Sort	120,000	254	32	any
recom system 11	exact	160	CPU	80,000	256	100	any
labelme 12 13	aprox.	40	lshkit	100,000	512	500	any

⁷S. Liang et al., IEEE Symp. Web. Soc., 2010

⁸Q. Kuang and L. Zhao, ISCSCT, 2009

⁹V. Garcia et al., ICIP, 2010

¹⁰R. J. Barientos et al., Euro-Par, 2011

¹¹ K. Kato and T. Hosino, CCGRID, 2010

¹² http://www.labelme.csail.mit.edu

¹³ J. Pan and D. Manocha, GIS, 2011

Outline

- Motivational Applications
- Problem Statemen
- State-of-the-Art Solutions
- Qualitative Performance Analysis
- Quantitative Performance Analysis: Placing Landmarks
- Multistage Streaming: Planning & Tuning

Performance Analysis: Qualitative Factors

I. Architecture independent

- > complexity in comparisons
- > variation in concurrency breadth

II. Architecture dependent

- effective concurrency breadth and dependency depth
- > synchronization cost on GPUs

How well do we know the architectural impact quantitatively?

Outline

- Motivational Applications
- Problem Statemen
- State-of-the-Art Solutions
- Qualitative Performance Analysis
- Quantitative Performance Analysis : Placing Landmarks
- Multistage Streaming: Planning & Tuning

Performance Assessment: Quantitative References

Explore the two-ways relationship between SORT and SELECT

- SORT ⇒ SELECT
 - > select or truncate *after* a complete ascending sort
 - truncated sort : truncate as early as possible during an ascending sort process

as reference landmarks for quantitative performance assessment, or even as competitive candidates

○ SELECT ← SORT

(omitted from this talk)

Truncated Sort Algorithms: Brief Summary

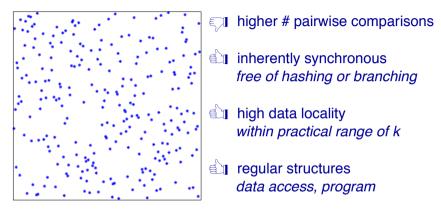
Algorithm	Serial	Parallel (length)	Truncation Approach	
BubbleSort 14	nk	$k(\log n - \log k + 1)$	k reversal passes	
InsertionSort	nk	$k(\log n - \log k + 1)$	length-k array	
HeapSort	n log k	$k(\log n - \log k + 1)$	max-heap of size <i>k</i>	
MergeSort 15	n log k	$k(\log n - \log k + 1)$	elimination by "half"	
QuickSort 12, 16	nk	$k(\log n - \log k + 1)$	elimination by "half"	
RadixSort 12, 13	n log _r c	log _r c	reverse radix (MSB)	
BitonicSort 17	n log² k	log k log n	length-k bitonic	

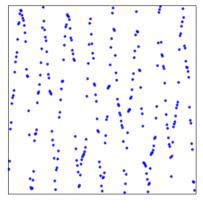
¹⁴C. E. Leiserson, Carnegie-Mellon Univ. Dep. of Comp. Sci., TR, 1979

¹⁵D. E. Knuth, The Art of Comp. Prog. 3, Addison-Wesley, 1973

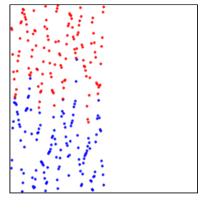
¹⁶D. M. W. Powers, PACT, 1991

¹⁷K. E. Batcher, AFIPS, 1968

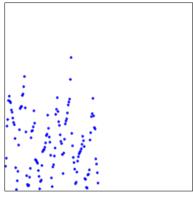




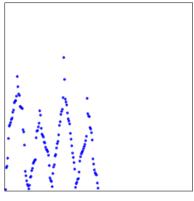
- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- in high data locality within practical range of k
- regular structures data access, program



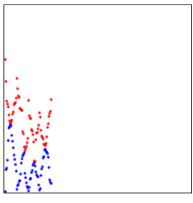
- ∏ higher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program



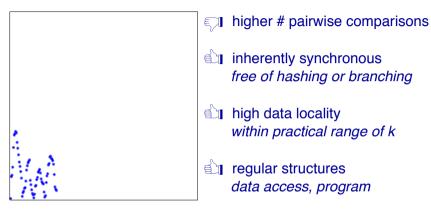
- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program

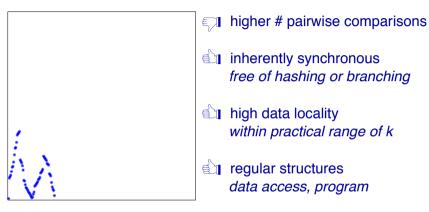


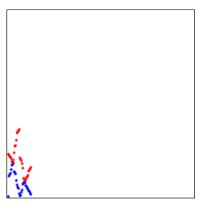
- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program



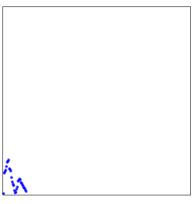
- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program



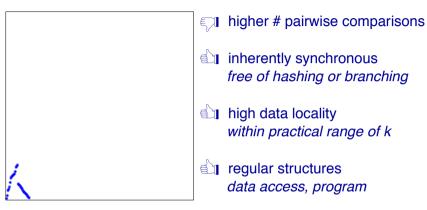


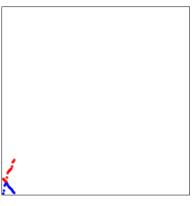


- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program

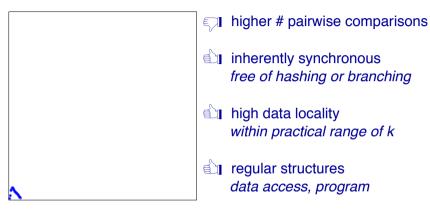


- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program

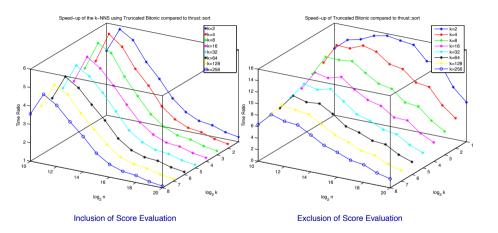




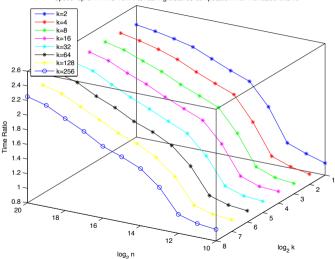
- nigher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program



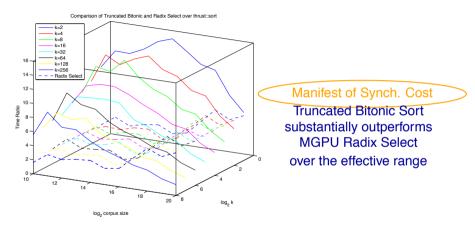
THRUST::SORT vs Truncated Bitonic Sort



Truncated Sorting Interleaved with Scoring



Truncated BitonicSort & MGPU RadixSelect 18



Here, thrust::sort used as a common base for comparison

¹⁸ www.moderngpu.com

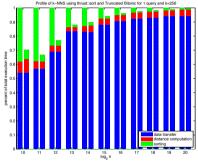
Outline

- Motivational Applications
- Problem Statement
- State-of-the-Art Solutions
- Qualitative Performance Analysis
- Quantitative Performance Analysis: Placing Landmarks
- 6 Multistage Streaming: Planning & Tuning

KNN Search in Multistage Streaming on GPUs

- transporting and buffering large corpus data in batches (batch size n)
- merging KNNs between the previous and the current corpus batches
- inclusion of score evaluation and pre/post computation tasks (separated or interleaved)
- multiple queries
 (as desirable in certain applications)

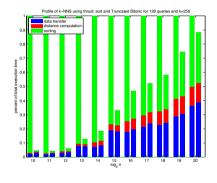
MultiStage KNN Profile on GPUs: Single Query



Profile in total execution time

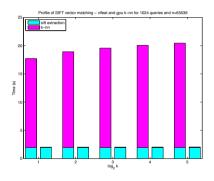
- Left bars: Truncate after sorting using thrust::sort in percentile: data transfer dominant when the batch size n is large
- Right bars: Truncated Bitonic normalized against the left bars

KNN Search Profile on GPUs: Multiple Queries



- Left bars: Truncate after sorting using thrust::sort
- Right bars: Truncated Bitonic normalized against the left bars

SIFT Feature Matching:



- VLFeat, a CV Library ^a
 - sequential implementation of feature extraction (with SIFT) and KNN search ^b
 - approximate k-NN using tree space partition
- Speed-up over VLFeat
 - ▶ 60X with 128 queries
 - \blacktriangleright 180 \sim 250X with 512 queries

a
http://www.vlfeat.org

bParallel SIFT vector extraction available on GPUs: http://www.cs.unc.edu/ ccwu/siftgpu/

Summary

We have

- > addressed response latency & throughput issues
- explored the SORT-SELECT relationship
- exposed the synchronization cost on GPUs & provided references for quantitative performance assessment (relevant for approximate KNN search as well)
- suggested options and opportunities to better exploit GPUs for rapid KNN search queries
- □ codes and test data available at http://autogpu.ee.auth.gr

Acknowledgments

NVIDIA academic research equipment support Marie Curie International Reintegration Program, EU National Science Foundation (CCF), USA