
Jacket: Faster MATLAB® Genomics Codes

by Chris McClanahan, GPU Engineer

Outline

• Introduction to Jacket for MATLAB®

• GFOR

• Comparison with GPU-PCT alternative

• Case Studies: Genomics Examples

Matrix Types

gdouble
double precision

gsingle
single precision

glogical
boolean

gint#
integers

guint#
unsigned integers

Matrix Types: ND Support

vectors

matrices

volumes … ND

Matrix Types: Easy Manipulation

A(1,:)

A(end,1)

A(1,1)

A(end,:)

A(:,:,2)

n = 20e6; % 20 million random samples

X = grand(1,n,’gdouble’);

Y = grand(1,n,’gdouble’);

distance_to_origin = sqrt(X.*X + Y.*Y);

is_inside = (distance_to_origin <= 1);

pi = 4 * sum(is_inside) / n;

Easy GPU Acceleration of M code

n = 20e6; % 20 million random samples

X = grand(1,n,’gdouble’);

Y = grand(1,n,’gdouble’);

distance_to_origin = sqrt(X.*X + Y.*Y);

is_inside = (distance_to_origin <= 1);

pi = 4 * sum(is_inside) / n;

Easy GPU Acceleration of M code

No GPU-specific stuff involved (no kernels, no
threads, no blocks, just regular M code)

“Very little recoding was needed to promote our Lattice Boltzmann Model
code to run on the GPU.” –Dr. Kevin Tubbs, HPTi

Easy GPU Acceleration of M code

y = gzeros(5, 5, n);

for i = 1:n,

 gselect(i); % choose GPU for this iteration

 x = grand(5,5); % add work to GPU’s queue

 y(:,:,i) = fft(x); % more work in queue

end

% all GPUs are now computing simultaneously, until done

Easy Multi GPU Scaling

Technology Stack
• A full system making

 optimizations for you

• Including

– “Core” runtime

– “JIT” smart copy/exec

– “Calls” functionality

runtime
 memory mgt
 binary handling
 GPU-multiplex
 thread mgt

core

JIT Engine(s)

plus.mex

minus.mex

bsxfun.mex

tan.mex

times.mex

power.mex

Calls (library routines + JIT)

fft.mex

fft2.mex

bessel.mex

conv2.mex

convn.mex

find.mex

sum.mex

subsasgn.mex

mldivide.mex

lu.mex

Automated Optimizations

300 cycles
one-way

GPU
Memory

GPU
Cores

A = sin(x + y).^2

CPU

Automated Optimizations

300 cycles
one-way

GPU
Memory

GPU
Cores

A = sin(x + y).^2

CPU
Optimized via

async transfer and
smart copy

Optimized via
runtime

GFOR

GPU FOR-loops

GFOR – Parallel FOR-loop for GPUs

• Like a normal FOR-loop, but faster

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

 gfor i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Parallel GPU FOR-loop (only 1 kernel launch)

Example: Matrix Multiply

*

B A(:,:,i)

iteration i = 1

C(:,:,i)

=

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

Example: Matrix Multiply

*

B A(:,:,i)

iteration i = 1

C(:,:,i)

= *

B A(:,:,i)

iteration i = 2

C(:,:,i)

=

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

Example: Matrix Multiply

*

B A(:,:,i)

iteration i = 1

C(:,:,i)

= *

B A(:,:,i)

iteration i = 2

C(:,:,i)

= *

B A(:,:,i)

iteration i = 3

C(:,:,i)

=

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

simultaneous iterations i = 1:3

B A(:,:,1:3) C(:,:,1:3)

* =
* =

* =

Example: Matrix Multiply

 gfor i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Parallel GPU FOR-loop (only 1 kernel launch)

simultaneous iterations i = 1:3

*

B A(:,:,1) C(:,:,1)

=

Example: Matrix Multiply

 gfor i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Parallel GPU FOR-loop (only 1 kernel launch)

Example: Summing over Columns

• Think of gfor as “syntactic sugar” to write
vectorized code in an iterative style.

 for i = 1:3

 A(i) = sum(B(:,i));

 gfor i = 1:3

 A(i) = sum(B(:,i));

Three passes to sum all columns of B

One pass to sum all columns of B

Both equivalent to “sum(B)”,
but latter is faster (more

explicitly written)

Jacket versus PCT parallel computing toolbox

MATLAB and PCT are products and trademarks of MathWorks.

Compare with R2012a PCT

MATLAB and PCT are products and trademarks of MathWorks.

• Jacket is faster

• Jacket does not use Java

• Jacket is very mature (~5 years)

• Jacket includes more functionality

Speedups with Jacket

MATLAB and PCT are products and trademarks of MathWorks.

Jacket has 10X more functions…

reductions
• sum, min, max,

any, all, nnz, prod
• vectors, columns,

rows, etc

convolutions
• 2D, 3D, ND

dense linear algebra
• LU, QR, Cholesky,

SVD, Eigenvalues,
Inversion, det,
Matrix Power,
Solvers

FFTs
• 2D, 3D, ND

image processing
• filter, rotate, erode,

dilate, bwmorph,
resize, rgb2gray

• hist, histeq

interp and rescale
• vectors, matrices
• rescaling

sorting
• along any dimension
• find

and many more…

gfor (loops) gcompile (fine-grain) gselect (multi-GPU)

help
• gprofview

Easy To Maintain

• Write your code once and let Jacket carry you
through the coming hardware evolution.

– Each new Jacket release improves the speed of
your code, without any code modification.

– Each new Jacket release leverages latest GPU
hardware (e.g. Fermi, Kepler), without any code
modification.

Case Studies

http://www.accelereyes.com/case_studies

17X

Neuro-imaging

Georgia Tech

20X

Video Processing

Google

12X

Medical Devices

Spencer Tech

5X

Weather Modeling

NCAR

35X

Power Engineering

IIT India

17X

Track Bad Guys

BAE

Systems

70X

Drug Delivery

Georgia Tech

35X

Bioinformatics

Leibniz

20X

Bio-Research

CDC

45X

Radar Imaging

System Planning

Case Study: CDC Genomics

• Hepatitis C Virus (HCV)

• Goal to explore random genetic mutations

• 10,000 random alignments
– simulating the distribution of correlation values

under the null hypothesis that substitutions of
amino acids at two sites are statistically
independent (how aa’s mutate HCV)

Case Study: CDC Genomics

• 10,000 random
alignments
intractable on CPU

• Addition of GPUs
brings ~18X
speedup

Case Study: Leibniz Institute

• High Throughput Multi-
Dimensional Scaling (HiT-MDS)

• High dimensional data
reconstructed for visualization

• Goal to understand data

• Speedup: 35X

Case Study: Spencer Technologies

• Real-time signal processing

• 64 ultrasound sensors

• Precise brain blood flow

• Speedup: 12X

Discussion

Faster MATLAB® through GPU computing

