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Introduction

Key Interests in Finance

Pricing of exotic derivatives

Monte-Carlo simulations

Local Volatility model for Foreign Exchange Rates (FX)

Hybrid with Interest Rate models (IR)

Key Interests in CUDA

High-dimensional Monte-Carlo simulations

Texture memory (layered)

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Introduction

Plan of the talk

Description of the problem and motivation for parallel
programming and textures
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Introduction

Plan of the talk

Description of the problem and motivation for parallel
programming and textures

Outline of implementation in CUDA

Numerical tests

Call/Put options in Local Volatility (LV) model
Exotic swaps in LV model
Exotic swaps in Hybrid LV model

Conclusion on performance and use in industry
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Description of the problem

The product: Power-Reverse Dual Coupon Swap (PRDC)
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Underlying swap: for a series of dates 0 ≤ Ti ≤ 30 years

receive option on FXi with strike Ki :

+max(FXi − Ki , 0)

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Description of the problem

The product: Power-Reverse Dual Coupon Swap (PRDC)

Underlying swap: for a series of dates 0 ≤ Ti ≤ 30 years

receive option on FXi with strike Ki :

+max(FXi − Ki , 0)

pay option on IRi with strike Qi :

−max(IRi − Qi , 0)
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Description of the problem

The product: Exotic exercise

Target Redemption Note (TARN) with target A
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Description of the problem

The product: Exotic exercise

Target Redemption Note (TARN) with target A

Monitor coupon sum

Ci =

i
∑

k=1

max(FXk − Kk , 0)
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Description of the problem

The product: Exotic exercise

Target Redemption Note (TARN) with target A

Monitor coupon sum

Ci =

i
∑

k=1

max(FXk − Kk , 0)

if Ci > A, cancel all remaining cash-flows
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Description of the problem

The product: Main features

Sensitive to FX smile

→ modelling of smile
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Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Description of the problem

The product: Main features

Sensitive to FX smile

→ modelling of smile

Sensitive to FX-IR correlation, IR volatility

→ modelling of IR stochasticity

→ multi-factor FX-IR hybrid

Path-dependent due to exotic exercise

→ mainly Monte-Carlo

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Description of the problem

The model: Dupire’s Local Volatility [1]

Diffusion with volatility σ(t,FX )

dFX

FX
= (rd − rf )dt + σ(t,FX )dW

rd is the domestic interest rate

rf is the foreign interest rate

dW is a Brownian motion
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The model: Calibration to the market of FX options
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The model: Calibration to the market of FX options

Market characterized by implied volatility θ(t,FX )

→ once differentiable in t, twice in FX (ideally)

→ satisfies non-arbitrage conditions (ideally)

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Description of the problem

The model: Calibration to the market of FX options

Market characterized by implied volatility θ(t,FX )

→ once differentiable in t, twice in FX (ideally)

→ satisfies non-arbitrage conditions (ideally)

Model fits the market exactly for Dupire’s condition

σ2(t,FX ) = f
(∂θ

∂t
,
∂θ

∂FX
,
∂2θ

∂FX 2

)
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Description of the problem

The model: Sampling the volatility

LV matrix defined as

σni = σ(tn,FXi)
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Description of the problem

The model: Sampling the volatility

LV matrix defined as

σni = σ(tn,FXi)

Typical size ∼ 200× 200 = 40, 000 entries

Bi-linear interpolation in t and FX

→ texture memory [2]

→ simple but lacks flexibility

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Description of the problem

The model: Sampling the volatility

LV matrix defined as

σni = σ(tn,FXi)

Typical size ∼ 200× 200 = 40, 000 entries

Bi-linear interpolation in t and FX

→ texture memory [2]

→ simple but lacks flexibility

Linear interpolation in FX at known t

→ layered textures

→ slightly more complicated but more flexible and/or
accurate
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Description of the problem

Summary

Multi-factor and path-dependent product

→ Monte-Carlo simulation

→ good speed-up expected with CUDA
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Description of the problem

Summary

Multi-factor and path-dependent product

→ Monte-Carlo simulation

→ good speed-up expected with CUDA

Model requires interpolation of a matrix

→ benefit from texture memory

Multiple cash-flows, monitoring, smile-modelling

→ large number of time steps

→ high-dimensional problem

→ inline random number generation
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Implementation Outline

Single-thread:

• On each path j , at each time tn
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Implementation Outline

Single-thread:

• On each path j , at each time tn

1 calculate next uniform random number

2 transform to Gaussian, then Brownian motion increment dW j
n

3 read previous spot FX j
n from memory

4 calculate volatility σ by calling texture at (tn,FX
j
n)
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Implementation Outline

Single-thread:

• On each path j , at each time tn

1 calculate next uniform random number

2 transform to Gaussian, then Brownian motion increment dW j
n

3 read previous spot FX j
n from memory

4 calculate volatility σ by calling texture at (tn,FX
j
n)

5 calculate new spot

FX
j
n+1 = FX j

ne
(rd−rf −

1
2
σ
2)(tn+1−tn)+σdW

j
n
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Implementation Outline

Single-thread:

• On each path j , at each time tn

1 calculate next uniform random number

2 transform to Gaussian, then Brownian motion increment dW j
n

3 read previous spot FX j
n from memory

4 calculate volatility σ by calling texture at (tn,FX
j
n)

5 calculate new spot

FX
j
n+1 = FX j

ne
(rd−rf −

1
2
σ
2)(tn+1−tn)+σdW

j
n

6 calculate product(s)
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Implementation Outline

Single-thread:

• On each path j , at each time tn

1 calculate next uniform random number

2 transform to Gaussian, then Brownian motion increment dW j
n

3 read previous spot FX j
n from memory

4 calculate volatility σ by calling texture at (tn,FX
j
n)

5 calculate new spot

FX
j
n+1 = FX j

ne
(rd−rf −

1
2
σ
2)(tn+1−tn)+σdW

j
n

6 calculate product(s)

7 write new spot in memory

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Implementation Outline

Single-thread:

• On each path j , at each time tn

1 calculate next uniform random number

2 transform to Gaussian, then Brownian motion increment dW j
n

3 read previous spot FX j
n from memory

4 calculate volatility σ by calling texture at (tn,FX
j
n)

5 calculate new spot

FX
j
n+1 = FX j

ne
(rd−rf −

1
2
σ
2)(tn+1−tn)+σdW

j
n

6 calculate product(s)

7 write new spot in memory

• Loop on path, then time.
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Implementation Outline

Multi-thread:

Sequential in time, parallel on paths
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Implementation Outline

Multi-thread:

Sequential in time, parallel on paths

Grid configuration

1-dimensional grid of Nblocks blocks
1-dimensional blocks of Nthreads threads
s = Nblocks × Nthreads = number of concurrent threads
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Implementation Outline

Multi-thread:

Sequential in time, parallel on paths

Grid configuration

1-dimensional grid of Nblocks blocks
1-dimensional blocks of Nthreads threads
s = Nblocks × Nthreads = number of concurrent threads

Thread j calculates paths j , j + s, j + 2s, etc ...
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Implementation Outline

Multi-thread:

Sequential in time, parallel on paths

Grid configuration

1-dimensional grid of Nblocks blocks
1-dimensional blocks of Nthreads threads
s = Nblocks × Nthreads = number of concurrent threads

Thread j calculates paths j , j + s, j + 2s, etc ...

Thread j must remember previous spot values for paths
j , j + s, j + 2s, etc ...

→ too much for shared memory

→ store previous spot values in global memory
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Implementation Outline

Multi-thread:

Thread j :

calculates products on paths j , j + s, j + 2s, etc ...
sums them in local variable
writes sums in shared memory

Sébastien Gurrieri Hybrid Local Volatility in Monte-Carlo



Implementation Outline

Multi-thread:

Thread j :

calculates products on paths j , j + s, j + 2s, etc ...
sums them in local variable
writes sums in shared memory

Synchronize
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Implementation Outline

Multi-thread:

Thread j :

calculates products on paths j , j + s, j + 2s, etc ...
sums them in local variable
writes sums in shared memory

Synchronize

In each block:

one thread is attributed to each product
accumulates in a local variable all thread sums for this product
writes ”block-partial” sum in global memory
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Implementation Outline

Multi-thread:

Global memory contains ”block-partial” sums for each
product, each block, at each time
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Implementation Outline

Multi-thread:

Global memory contains ”block-partial” sums for each
product, each block, at each time

Transfer to host
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Implementation Outline

Multi-thread:

Global memory contains ”block-partial” sums for each
product, each block, at each time

Transfer to host

On host, sum results of all blocks.
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Implementation Outline

Multi-thread: remark on random number generation

typical number of times: 500
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Implementation Outline

Multi-thread: remark on random number generation

typical number of times: 500

typical number of factors: 2, but easily going to 3 and more

typical number of simulations: 100K, but may want more

global generation requires minimum global memory

500× 2× 100, 000 × 4 = 400MB
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Implementation Outline

Multi-thread: remark on random number generation

typical number of times: 500

typical number of factors: 2, but easily going to 3 and more

typical number of simulations: 100K, but may want more

global generation requires minimum global memory

500× 2× 100, 000 × 4 = 400MB

cannot run on all devices, too restrictive for pratical
applications

→ use inline generation
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Implementation Outline

Texture:

Desired interpolation
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Implementation Outline

Texture:

Texture interpolation
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Implementation Outline

Texture:

Linear rescaling is required
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Implementation Outline

Texture:

Linear rescaling is required

Given spots FX0,FX1, · · · FXM−1, volatilities σ0, σ1, · · · σM−1
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Implementation Outline

Texture:

Linear rescaling is required

Given spots FX0,FX1, · · · FXM−1, volatilities σ0, σ1, · · · σM−1

The volatility at any spot FX is

σ(FX ) = tex(αFX + β)
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Implementation Outline

Texture:

Linear rescaling is required

Given spots FX0,FX1, · · · FXM−1, volatilities σ0, σ1, · · · σM−1

The volatility at any spot FX is

σ(FX ) = tex(αFX + β)

with



















α =
M − 1

M(FXM−1 − FX0)

β =
1

M

(1

2
− (M − 1)

FX0

FXM−1 − FX0

)
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Implementation Outline

Texture:

Bi-linear interpolation with standard texture

σ(t,FX ) = tex2D(αFX + β, γt + δ)
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Implementation Outline

Texture:

Bi-linear interpolation with standard texture

σ(t,FX ) = tex2D(αFX + β, γt + δ)

Linear interpolation with layered texture

σ(tn,FX ) = tex1DLayered(αFX + β, n)
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Numerical Tests

Vanilla Options:

Performance of the texture (500 time steps, 500K simulations)

50% ∼ 70% speed gains with texture

good accuracy of the texture interpolation

∼ 100 points sufficient
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Numerical Tests

Vanilla Options:

Gain (single thread vs. GTX 460)
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Numerical Tests

Exotic Swap (one factor):

Additional state variable on path j

C
j
i =

i
∑

k=1

max(FX j
k − Kk , 0)

→ one more read/write access from global memory
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Numerical Tests

Exotic Swap (one factor):

Additional state variable on path j

C
j
i =

i
∑

k=1

max(FX j
k − Kk , 0)

→ one more read/write access from global memory

Product calculated only at cash-flow times (at most 120)

→ less operations than for vanillas (500)
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Numerical Tests

Exotic Swap (one factor):

Gain (single thread vs. GTX 460)
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Numerical Tests

Exotic Swap (hybrid 2F):

rd follows Hull-White model

drd = (θ − ard )dt + σrdWr
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Numerical Tests

Exotic Swap (hybrid 2F):

rd follows Hull-White model

drd = (θ − ard )dt + σrdWr

it has a correlation ρ with FX

dWFX = g1
√
dt

dWr = (ρg1 +
√

1− ρ2g2)
√
dt
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Numerical Tests

Exotic Swap (hybrid 2F):

rd follows Hull-White model

drd = (θ − ard )dt + σrdWr

it has a correlation ρ with FX

dWFX = g1
√
dt

dWr = (ρg1 +
√

1− ρ2g2)
√
dt

2 additional state variable on path j

r j , e
∫ T

0
r jdt (numeraire)

→ two more read/write accesses to global memory
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Numerical Tests

Exotic Swap (hybrid 2F):

Gain (single thread vs. GTX 460)
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Conclusion

Extention to 3F, barriers

→ very similar to 2F, TARN

→ should not be a problem
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Conclusion

Extention to 3F, barriers

→ very similar to 2F, TARN

→ should not be a problem

Extention to callables

→ Longstaff-Schwartz not entirely parallel

→ should not be a problem but gains may be lower

→ use Malliavin calculus? (Abbas-Turki, GTC 2010)
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Conclusion

Large gains on GTX 460 and for realistic products and pricing
configurations
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Conclusion

Large gains on GTX 460 and for realistic products and pricing
configurations

Possibility to run more simulations

→ more accurate Greeks

→ more efficient risk management

Value-at-Risk and Potential Exposure calculations possible
without approximations

Large number of scenario testing possible on exotic portfolios
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Disclaimer

This publication has been prepared by Sebastien Gurrieri of Mizuho International plc
solely for the purpose of presentation at this conference. The opinions expressed in
this presentation are those of the author and do not necessarily reflect the view of
Mizuho International plc, which is not responsible for any use which may be made of
its contents.

It is not, and should not be construed as, an offer or solicitation to buy, or sell, any
security, or any interest in a security or enter into any transaction. This publication
may include details of instruments that have not been issued. There is no guarantee
that such instruments will be issued in the future.

This publication has been prepared solely from publicly available information.
Information contained herein and the data underlying it have been obtained from, or
based upon, sources believed by the author to be reliable. However, no assurance can
be given that the information, data or any computations based thereon, is accurate or
complete. Opinions stated in this report are subject to change without notice.
There are risks associated with the financial instruments and transactions described in
this publication. Investors should consult their own financial, legal, accounting and tax
advisors about the risks, the appropriate tools to analyse an investment and the
suitability of an investment in their particular circumstances. Mizuho International plc
is not responsible for assessing the suitability of any investment. Investment decisions
and responsibility for any investments is the sole responsibility of the investor. Neither
the author, Mizuho International plc nor any affiliate accepts any liability whatsoever
with respect to the use of this report or its contents.
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