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* We will use CUDA terminology, but the same† discussion can be extended to OpenCL 

 

NOTE: 
(CUDA | OpenCL) Terminology 

CUDA OpenCL 

Thread Work item 

Warp -- 

Thread block Work group 

Grid Index space 

Local memory Private memory 

Shared memory Local memory 

Global memory Global memory 

Scalar core Processing element 

Multi-processor (SM) Compute unit 
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Preliminaries: 
Workload Evolution 
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Core GPGPU Programming Characteristics 
(& Limitations) 

1. Host-Device Interface 
 Master-slave processing 

 Kernel size 

2. Device-side Properties 
 Lifetime of a Block 

 Hardware Scheduler 

 Block State 

3. Memory Consistency 
 Intra-block 

 Inter-block 

4. Kernel Invocations 
 Producer-consumer 

 Spawning kernels 

 

Irregular workloads 



Preliminaries: 
Example – Image Processing (outside Pixar HQ) 
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A sample image of 128x128 
pixels divided into 16 blocks 

vertical motion blur;  
processed on a 4-SM GPU 
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Persistent Threads: 
Properties 

1. Maximal Launch – A kernel uses only as many 
threads as can be concurrently scheduled on 
the SMs 

 

 

 

2. Software, not hardware, schedules work 
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Persistent Threads: 
Properties 

1. Maximal Launch – A kernel uses only as many 
threads as can be concurrently scheduled on the 
SMs 
 Thread-group (v/s thread-block) 
 Upper-bound: maximal launch 

 Lower-bound: 1 

 

2. Software, not hardware, schedules work 
 Work-queues 
 Several optimizations possible 

 In his paper – single global FIFO 



Common Communication Patterns 

 Linear 

 Diagonal 

 Zig-Zag 

 Scanline 

 Wavefront 

 Pinwheel 

 Checker 

 . 

 . 

 . 



• μ-kernel benchmarks 

• Workload comprises of FMAs 

• Nvidia GeForce GTX295 

Use Cases 



PT Use Cases 

# Use Case Scenario Advantage of Persistent Threads 

1 
CPU-GPU 

Synchronization 

Kernel A produces a 
variable amount of data 
that must be consumed by 
Kernel B 

nonPT implementations require a round-trip 
communication to the host to launch Kernel B with the 
exact number of blocks corresponding to work items 
produced by Kernel A. 

2 Load Balancing 
Traversing an irregularly-
structured, hierarchical 
data structure 

PT implementations build an efficient queue to allow a 
single kernel to produce a variable amount of output per 
thread and load balance those outputs onto threads for 
further processing. 

3 
Maintaining Active 

State 

A kernel accumulates a 
single value across a large 
number of threads, or 
Kernel A wants to pass data 
to Kernel B through shared 
memory or registers 

Because a PT kernel processes many more items per block 
than a nonPT kernel, it can effectively leverage shared 
memory across a larger block size for an application like a 
global reduction. 

4 
Global 

Synchronization 

Global synchronization 
within a kernel across 
workgroups 

In a nonPT kernel, synchronizing across blocks within a 
kernel is not possible because blocks run to completion and 
cannot wait for blocks that have not yet been scheduled. 
The PT model ensures that all blocks are resident and thus 
allows global synchronization. 



Use Case #1: 
CPU-GPU Synchronization 

Scenario Advantage of Persistent Threads 

Kernel A produces a variable 
amount of data that must be 

consumed by Kernel B 

nonPT implementations require a round-trip communication to the host to 
launch Kernel B with the exact number of blocks corresponding to work 
items produced by Kernel A. 
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Use Case #1: 
CPU-GPU Synchronization 



Use Case #2: 
Load Balancing/Irregular Parallelism 

Scenario Advantage of Persistent Threads 

Traversing an irregularly-
structured, hierarchical data 

structure 

PT implementations build an efficient queue to allow a single kernel to 
produce a variable amount of output per thread and load balance those 
outputs onto threads for further processing. 



Use Case #2: 
Workload Illustration – Tree(s) 
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(a) Full Tree 
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Use Case #2: 
Workload – Complete Tree 



Use Case #2: 
Workload – Tilted Tree 



Use Case #3: 
Maintaining Active State 

Scenario Advantage of Persistent Threads 

A kernel accumulates a single 
value across a large number of 

threads, or Kernel A wants to pass 
data to Kernel B through shared 

memory or registers 

Because a PT kernel processes many more items per block than a nonPT 
kernel, it can effectively leverage shared memory across a larger block size 
for an application like a global reduction. 
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Use Case #3: 
Workload Illustration – Reduction 



Use Case #3: 
Workload – Reduction 



Use Case #4: 
Global Synchronization 

Scenario Advantage of Persistent Threads 

Global synchronization within a 
kernel across workgroups 

In a nonPT kernel, synchronizing across blocks within a kernel is not 
possible because blocks run to completion and cannot wait for blocks that 
have not yet been scheduled. The PT model ensures that all blocks are 
resident and thus allows global synchronization. 
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Use Case #4: 
Global Synchronization 



Portability & Usability 

# Use Case Occupancy Scheduling Comments 

1 
CPU-GPU 

Synchronization 
----- ----- indirect; CPU-GPU workload partitioning 

2 

Load 
Balancing/Irregular 

Parallelism 
-----  

non-trivial when sophisticated queuing 
structures (local + global) and work 
stealing/donation optimizations are used 

3 
Maintaining Active 

State 
  

different kernel organization and 
partitioning strategies 

4 
Global 

Synchronization 
 ----- hard to debug as occupancy changes 



Looking Ahead… 

# Use Case Disucssion 

1 
CPU-GPU 

Synchronization 
• Less of an issue on future consumer systems; but HPC still a problem 
• We expect this to be addressed in the future 

2 

Load 
Balancing/Irregular 

Parallelism 
• Provide support for queues 

3 
Maintaining Active 

State 
• Very hard to solve! 

4 
Global 

Synchronization 
• Kernel launch might be cheaper than synchronizing across an entire 

chip in future-generation hardware 



Looking Ahead… 

 Return-on-Investment 

 

 Power? 

 

 Modifications? 

 Native support would not require a complete re-
making of the underlying hardware 

 Small changes could lead to reasonable gains 

 Augment existing APIs? 
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