
A Study of Persistent Threads
Style Programming Model for
GPU Computing

Kshitij Gupta [/shi/ /tij/]

UC Davis
GTC 2012 | San Jose

http://www.kshitijgupta.com/

A Study of Persistent Threads
Style GPU Programming for
GPGPU Workloads

Kshitij Gupta, Jeff A. Stuart, John D. Owens

UC Davis
InPar 2012 | San Jose

http://www.kshitijgupta.com/

Outline

 GPGPU Programming (“nonPT”)

 Limitations

 Introduction to “PT”

 Use Cases

 Observations/Discussion

* We will use CUDA terminology, but the same† discussion can be extended to OpenCL

NOTE:
(CUDA | OpenCL) Terminology

CUDA OpenCL

Thread Work item

Warp --

Thread block Work group

Grid Index space

Local memory Private memory

Shared memory Local memory

Global memory Global memory

Scalar core Processing element

Multi-processor (SM) Compute unit

Preliminaries:
GPGPU Programming Hierarchy

D
R

A
M

GPU

SM_3 SM_2 SM_1 SM_0

Preliminaries:
GPGPU Programming Hierarchy

D
R

A
M

Warp

P0_0 P1_0 P7_0 P0_X P1_X P7_X
SIMT

SM0

P0 P1 P7

Virtualize

SIMD

Preliminaries:
GPGPU Programming Hierarchy

D
R

A
M

Warp

P0_0 P1_0 P7_0 P0_X P1_X P7_X
SIMT

SM0

P0 P1 P7

Block

W0 W1 WN

Virtualize VirtualizE

Preliminaries:
GPGPU Programming Hierarchy

D
R

A
M

Warp

P0_0 P1_0 P7_0 P0_X P1_X P7_X
SIMT

SM0

P0 P1 P7

Block

W0 W1 WN

B0 B1 BM (a) SPMD

Virtualize VirtualizE ViRtUaLiZe

Preliminaries:
GPGPU Programming Hierarchy

D
R

A
M

Warp

P0_0 P1_0 P7_0 P0_X P1_X P7_X
SIMT

SM0

P0 P1 P7

Block

W0 W1 WN

(a) SPMD

(b)

B0 B1 BM

Virtualize VirtualizE ViRtUaLiZe VIRTUALIZE!!

Preliminaries:
Workload Evolution

Unified Shader
Core

ibuff

obuff

ibuff

obuff

ibuff

obuff

Shader A

Shader B

Shader C

(a) Pre-2006: Discrete cores

Core
C

Core
B

Core
A

ibuff

obuff

ibuff

obuff

ibuff

obuff

(b) 2006: Stream programming – CUDA
architecture with unified cores; along

with ‘C for CUDA’

Preliminaries:
Workload Evolution

Unified Shader
Core

ibuff

obuff

ibuff

obuff

ibuff

obuff

Kernel A

Kernel B

Kernel C

(i)

(ii)

(iii)

(a) Pre-2006: Discrete cores

Core
C

Core
B

Core
A

ibuff

obuff

ibuff

obuff

ibuff

obuff

(b) 2006: Stream programming – CUDA
architecture with unified cores; along

with ‘C for CUDA’

(c) Today: A sample of irregular workload
patterns

ibuff

obuff obuff

ibuff

obuff

ibuff

ibuff

obuff

sync

sync

Core GPGPU Programming Characteristics
(& Limitations)

1. Host-Device Interface
 Master-slave processing

 Kernel size

2. Device-side Properties
 Lifetime of a Block

 Hardware Scheduler

 Block State

3. Memory Consistency
 Intra-block

 Inter-block

4. Kernel Invocations
 Producer-consumer

 Spawning kernels

Irregular workloads

Preliminaries:
Example – Image Processing (outside Pixar HQ)

Grid

Kernel

Block

Thread

A sample image of 128x128
pixels divided into 16 blocks

vertical motion blur;
processed on a 4-SM GPU

In
p

u
t

Im
ag

e

O
u

tp
u

t
Im

ag
e

G

P
U

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

2 3 1 0

1 0 3 2

3 2 0 1

A sample image of 128x128
pixels divided into 16 blocks nonPT illustration

vertical motion blur;
processed on a 4-SM GPU

So
ftw

are
 vie

w

H
ard

w
are

 vie
w

In

p
u

t
Im

ag
e

O

u
tp

u
t

Im
ag

e

16 blocks mapped to the 4
SMs in random order

G
P

U

0 1 2 3

Persistent Threads:
Properties

1. Maximal Launch – A kernel uses only as many
threads as can be concurrently scheduled on
the SMs

2. Software, not hardware, schedules work

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

2 3 1 0

1 0 3 2

3 2 0 1

A sample image of 128x128
pixels divided into 16 blocks nonPT illustration

vertical motion blur;
processed on a 4-SM GPU

So
ftw

are
 vie

w

H
ard

w
are

 vie
w

In

p
u

t
Im

ag
e

O

u
tp

u
t

Im
ag

e

16 blocks mapped to the 4
SMs in random order

G
P

U

0 1 2 3

0 1 2 3

PT illustration

4 SMs  4 thread groups

0 1 2 3

Persistent Threads:
Properties

1. Maximal Launch – A kernel uses only as many
threads as can be concurrently scheduled on the
SMs
 Thread-group (v/s thread-block)
 Upper-bound: maximal launch

 Lower-bound: 1

2. Software, not hardware, schedules work
 Work-queues
 Several optimizations possible

 In his paper – single global FIFO

Common Communication Patterns

 Linear

 Diagonal

 Zig-Zag

 Scanline

 Wavefront

 Pinwheel

 Checker

 .

 .

 .

• μ-kernel benchmarks

• Workload comprises of FMAs

• Nvidia GeForce GTX295

Use Cases

PT Use Cases

Use Case Scenario Advantage of Persistent Threads

1
CPU-GPU

Synchronization

Kernel A produces a
variable amount of data
that must be consumed by
Kernel B

nonPT implementations require a round-trip
communication to the host to launch Kernel B with the
exact number of blocks corresponding to work items
produced by Kernel A.

2 Load Balancing
Traversing an irregularly-
structured, hierarchical
data structure

PT implementations build an efficient queue to allow a
single kernel to produce a variable amount of output per
thread and load balance those outputs onto threads for
further processing.

3
Maintaining Active

State

A kernel accumulates a
single value across a large
number of threads, or
Kernel A wants to pass data
to Kernel B through shared
memory or registers

Because a PT kernel processes many more items per block
than a nonPT kernel, it can effectively leverage shared
memory across a larger block size for an application like a
global reduction.

4
Global

Synchronization

Global synchronization
within a kernel across
workgroups

In a nonPT kernel, synchronizing across blocks within a
kernel is not possible because blocks run to completion and
cannot wait for blocks that have not yet been scheduled.
The PT model ensures that all blocks are resident and thus
allows global synchronization.

Use Case #1:
CPU-GPU Synchronization

Scenario Advantage of Persistent Threads

Kernel A produces a variable
amount of data that must be

consumed by Kernel B

nonPT implementations require a round-trip communication to the host to
launch Kernel B with the exact number of blocks corresponding to work
items produced by Kernel A.

CPU

GPU’-kC

GPU-kP

data

param

CPU

CPU

GPU-kP

data

param

GPU-kC

param

d
ata

d
at

a

read-back
barrier trb

tcpu

tlaunch

(a) nonPT (b) PT

Use Case #1:
CPU-GPU Synchronization

Use Case #2:
Load Balancing/Irregular Parallelism

Scenario Advantage of Persistent Threads

Traversing an irregularly-
structured, hierarchical data

structure

PT implementations build an efficient queue to allow a single kernel to
produce a variable amount of output per thread and load balance those
outputs onto threads for further processing.

Use Case #2:
Workload Illustration – Tree(s)

Initial Inputs

o

f
le

ve
ls

Initial Inputs

o

f
le

ve
ls

(a) Full Tree

(b) Tilted Tree

Use Case #2:
Workload – Complete Tree

Use Case #2:
Workload – Tilted Tree

Use Case #3:
Maintaining Active State

Scenario Advantage of Persistent Threads

A kernel accumulates a single
value across a large number of

threads, or Kernel A wants to pass
data to Kernel B through shared

memory or registers

Because a PT kernel processes many more items per block than a nonPT
kernel, it can effectively leverage shared memory across a larger block size
for an application like a global reduction.

Kernel-
X2

Kernel-
X1

Kernel-
X3

GPU
Kernel-X’

(a) nonPT (b) PT

Use Case #3:
Workload Illustration – Reduction

Use Case #3:
Workload – Reduction

Use Case #4:
Global Synchronization

Scenario Advantage of Persistent Threads

Global synchronization within a
kernel across workgroups

In a nonPT kernel, synchronizing across blocks within a kernel is not
possible because blocks run to completion and cannot wait for blocks that
have not yet been scheduled. The PT model ensures that all blocks are
resident and thus allows global synchronization.

Kernel-
X2

Kernel-
X1

cross-block
barrier #1

cross-block
barrier #2

Kernel-
X3

GPU
Kernel-X’

PT
barrier #1

PT
barrier #2

(a) nonPT (b) PT

Use Case #4:
Global Synchronization

Portability & Usability

Use Case Occupancy Scheduling Comments

1
CPU-GPU

Synchronization
----- ----- indirect; CPU-GPU workload partitioning

2

Load
Balancing/Irregular

Parallelism
----- 

non-trivial when sophisticated queuing
structures (local + global) and work
stealing/donation optimizations are used

3
Maintaining Active

State
 

different kernel organization and
partitioning strategies

4
Global

Synchronization
 ----- hard to debug as occupancy changes

Looking Ahead…

Use Case Disucssion

1
CPU-GPU

Synchronization
• Less of an issue on future consumer systems; but HPC still a problem
• We expect this to be addressed in the future

2

Load
Balancing/Irregular

Parallelism
• Provide support for queues

3
Maintaining Active

State
• Very hard to solve!

4
Global

Synchronization
• Kernel launch might be cheaper than synchronizing across an entire

chip in future-generation hardware

Looking Ahead…

 Return-on-Investment

 Power?

 Modifications?

 Native support would not require a complete re-
making of the underlying hardware

 Small changes could lead to reasonable gains

 Augment existing APIs?

Kshitij Gupta
www.kshitijgupta.com

Thank You!

