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Problem Description

Air bubbles rising in Water.

Mass-Conserving Level-Set method to solve the Navier Stokes equation. Marker
function φ changes sign at interface.

S(t) = {x |φ(x , t) = 0}. (1)

Interface is evolved using advection of Level-Set function

∂φ

∂t
+ u. ▽ φ = 0 (2)

1
A mass-conserving Level-Set method for modeling of multi-phase flows. S.P. van der Pijl, A. Segal and C. Vuik.

International Journal for Numerical Methods in Fluids 2005; 47:339–361
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Problem Description

Air bubbles rising in Water.

−∇.(
1

ρ(x)
∇p(x)) = f (x), x ∈ Ω (1)

∂

∂n
p(x) = g(x), x ∈ ∂Ω (2)

◮ Pressure-Correction (above) equation is discretized to a linear system Ax = b.
◮ Most time consuming part is the solution of this linear system
◮ A is Symmetric Positive-Definite (SPD) so Conjugate Gradient is the method of

choice.
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Two definitions

◮ Condition Number → κ(A) := λn
λ1

◮ Stopping Criteria →
‖b−Axk‖2

‖r0‖
≤ ǫ

1. ǫ is the tolerance we set for the solution.

2. λn ≥ λn−1 · · · ≥ λ2 ≥ λ1. λ’s are the eigenvalues of A.

3. xk is the solution vector after k iterations of (P)CG.

4. r0 is the initial residual.
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Test Problem - Computational Domain
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Spectrum of the Coefficient Matrix (semilog scale).
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Huge jump at Interface due to contrast in densities leads to ill-conditioned A.
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Preconditioning
Block Incomplete Cholesky Preconditioning 1 2

Within blocks the computation is sequential.

1
An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix. J.A. Meijerink,

H.A.van der Vorst (1977).Math. Comp. (American Mathematical Society).
2

Iterative methods for sparse linear systems. 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003.
Yousef Saad.
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Preconditioning
Truncated Neumann Series Preconditioning12

M−1 = K T K , where K = (I − L̃ + L̃2 + · · · ). (3)

1. More terms give better approximation.
2. In general the series converges if ‖ L̃ ‖∞< 1.

3. As much parallelism on offer as Sparse Matrix Vector Product.

L̃ is the strictly lower triangular of Ã,

where Ã = D
−1
2 AD

−1
2 and D = diag(A).

1
A vectorizable variant of some ICCG methods. Henk A. van der Vorst. SIAM Journal of Scientific Computing. Vol. 3 No. 3

September 1982.
2

Approximating the Inverse of a Matrix for use in Iterative Algorithms on Vector Processors. P.F. Dubois. Computing (22)
1979.
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Deflation
Background.

Removes small eigenvalues from the eigenvalue spectrum of A.
The linear system Ax = b can then be solved by employing the splitting,

x = (I − PT )x + PT x where P = I − AQ. (4)

⇔ Pb = PAx̂ . (5)

Q = ZE−1Z T , E = Z T AZ .
E is the coarse system that is solved every iteration.
Z is the deflation sub-space matrix. It contains an approximation of the eigenvectors
of M−1A.

For our experiments Z consists of piecewise constant vectors.
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Deflation
Deflated Preconditioned Conjugate Gradient Algorithm

1: Select x0. Compute r0 := b − Ax0 and r̂0 = Pr0, Solve My0 =
r̂0 and set p0 := y0.

2: for j:=0,..., until convergence do
3: ŵj := PApj

4: αj :=
(r̂j ,yj )

(pj ,ŵj )

5: x̂j+1 := x̂j + αjpj

6: r̂j+1 := r̂j − αj ŵj

7: Solve Myj+1 = r̂j+1

8: βj :=
(r̂j+1,yj+1)

(r̂j ,yj )

9: pj+1 := yj+1 + βjpj

10: end for
11: xit := Qb + PT xj+1
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Effect of Deflation
Convergence1.

with preconditioning only. with preconditioning and deflation.

1
Conjugate Gradient. Deflation vectors are 2n. Precision Criteria 1e − 6.
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Implementation - PCG

1. Finite Difference discretization leads to 5/7 point stencil for a
2/3D grid.

2. Diagonal Format of storage for the coefficient matrix A.

3. Preconditoning and SpMV (Sparse Matrix Vector) Products take
the bulk of time.

4. CUBLAS/CUSP libraries for efficient implementation.
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Implementation - Preconditioning

Truncated Neumann Series Preconditioning

Two variants of Neumann Preconditioning have been tried:-
K = (I − L̃) or K = (I − L̃ + L̃2)
y = M−1r , where M = K T K , is implemented as

1. s = (I − L̃)x ,

2. y = (I − L̃T )s.

◮ Only L̃ is stored.

◮ Degree of Parallelism = Problem Size, N = n × n.
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Implementation - Deflation
Operations involved in deflation1 2.

◮ a1 = Z T p.
◮ m = E−1a1.
◮ a2 = AZm.
◮ ŵ = p − a2.

where, E = Z T AZ is the Galerkin Matrix and Z is the matrix of deflation vectors.

1
Efficient deflation methods applied to 3-D bubbly flow problems. J.M. Tang, C. Vuik Elec. Trans. Numer. Anal. 2007.

2
An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the

coefficients. C. Vuik, A. Segal, J.A. Meijerink J. Comput. Phys. 1999.
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Implementation - Deflation

Choices for solving inner system.
◮ a1 = Z T p.

◮ m = E−1a1.
◮ a2 = AZm.
◮ ŵ = p − a2.

Two choices for step 2.
© Explicit Inverse Calculation © Triangular Solve
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Implementation - Deflation
Storage of Z and of AZ .

Z Matrix has this structure due to stripe-wise domains.
For AZ the aforementioned data structure has the advantages of the DIA Storage format1.

1
Efficient Sparse Matrix-Vector Multiplication on CUDA. N. Bell and M. Garland, 2008 , NVIDIA Corporation, NVR-2008-04
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Implementation - Deflation

Choices for deflation vectors - I

1. Stripe-wise Vectors

2. Block Deflation Vectors

3. Level-Set based vectors
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Implementation - Deflation
Choices for deflation vectors - II
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Results - Test Problem - One Interface
Hardware

1. CPU - single core of Q9550-2.83 GHz.
2. GPU - Tesla C2070.

Timing and Speedup Definition
Speedup is measured as a ratio of the time taken(T ) to complete k
iterations (of the DPCG method) on the two different architectures,

Speedup =
TCPU

TGPU
(4)

Z is chosen piecewise constant. At least 2n deflation vectors are
chosen for problem size N = n × n.
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Results
Test Problem - Convergence comparison.

Block-IC vs. Truncated Neumann1 2 .

1
Conjugate Gradient. Deflation vectors are 2n. Precision Criteria 1e − 6. Contrast 1000 : 1.

2
blk-ic(2n) means Block-Incomplete Cholesky with block-size = 2n.
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Results
Test Problem - SpeedUp.
Setup Time excluded.

Small Speed-Up
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Results
Test Problem - SpeedUp.
Setup Time excluded.

Large Speed-Up
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Results
Test Problem -Deflation Solution Method Comparison -CPU.
Setup Times Only.

Triangular Solve Explicit Inverse

1. Both these results are for a CPU Implementation of Deflation.
2. Two different Grid Sizes are compared.
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Results
Test Problem -Deflation Solution Method Comparison -GPU.
Setup Times Only.

Triangular Solve Explicit Inverse

1. Both these results are for a GPU Implementation of Deflation.
2. Two different Grid Sizes are compared.
3. Size of Matrix that has to be inverted is 2n × 2n, where N = n × n.
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Lessons Learnt

1. Using Explicit Inverse Calculation gives better speedup but setup
times are prohibitively large.

2. Fewer Deflation vectors can make inversion cheaper.

3. More effective (but less in number) deflation vectors must be
chosen.
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Results
Test Problem - Effect of Deflation vector choices.

Experiments done in Matlab. DPCG with Block Incomplete Cholesky
preconditioning (block size - 2n).
Block-Vectors are as effective at 1/8th the size of stripe-wise vectors.
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Results
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Lessons Learnt
1. Using Explicit Inverse Calculation gives better speedup but setup

times are prohibitively large.
2. Fewer Deflation vectors can make inversion cheaper.
3. More effective (but less in number) deflation vectors must be

chosen.

What if block vectors (or Level-Set) could be used with explicit inverse
based deflation?
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Choices for deflation vectors - Blocks and Level-Set
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Realistic Problem
Computational Domain

1. Neumann boundary condition on all sides for pressure.
2. Density is calculated using the Level-Set Approach.
3. Density Contrast is 1e ± 03. Stopping Criteria is 1e − 06.
4. Problem is defined over a unit cube.
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Realistic Problem
Distribution of Eigenvalues (loglog Scale).
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Realistic Problem
Distribution of Eigenvalues (loglog Scale).
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Realistic Problem
Distribution of Eigenvalues (loglog Scale).
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Realistic Problem
Distribution of Eigenvalues (loglog Scale).
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7 eigenvalues of the order of the density contrast in addition to 1 zero
eigenvalue due to the density contrast.
D is the diagonal of A.
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Changes in Implementation.
Stripe-wise vectors do not give good results for bubbles in 3D problem
as well.

2n=Stripe-wise 2n vectors, LS-4blk=Level-Set vectors combined with block-shaped sub-domain vectors,
S=Sub-Domain Vectors(blocks)
32x32 grid with two bubbles and density contrast 1000 : 1. Air bubbles in water.
A move to Improved (block and level-set) vectors is required.
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Changes in Implementation.

Storage for AZ must be changed

AZ could require more storage or difficult to store as before.

Stripe-Wise Case Block-Wise Case
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Changes in Implementation.

◮ Block Structure of deflation vectors requires more diagonals.
◮ Level-Set based deflation vectors would leave non-zeros in AZ at

unpredictable locations.
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Changes in Implementation.

Using CUSP to store AZ in HYB format.
Any kind of vectors can be chosen in Z .
Multiplication of A with Z also handled by CUSP (done on device).
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Results
Realistic Problem - 3D

Results for a 1283 grid for density contrast 1e±3. Stopping Criteria 1e − 06.
8 Block-wise deflation vectors were used for Z .
DICCG refers to Deflated Incomplete Cholesky (preconditioned) CG.

DPCG(Neu2) refers to Deflated Neumann (variant2) (preconditioned) CG.
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Lessons Learnt

The Multiple Bubble Problem.

1. For the air bubbles in water problem Neumann Preconditioning
doesn’t work well.

2. 1 is true only for multiple bubbles. For single bubble Neumann
works comparable to IC.

3. Neumann works reasonably for water droplets in air, since there
are no eigenvalues of the order of the density contrast.
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Move scaling out of the Preconditioner

We re-define the Neumann2 Truncation based preconditioner as
follows:

M−1 = K T D−1K , where K = (I − LD−1 + (LD−1)2 + · · · ). (5)

Please note that now we use L instead of L̃ and also A, x and b are
NOT scaled.
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Results
Realistic Problem - 3D - with Neumann corrected

Results for a 1283 grid for density contrast 1e±3. Stopping Criteria 1e − 06.
8 Block-wise deflation vectors were used for Z .
DICCG refers to Deflated Incomplete Cholesky (preconditioned) CG.

DPCG(Neu2i) refers to Deflated Neumann (variant2) (preconditioned) CG and scaling only in the preconditioner not in A, x and b.
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Results

Bubbly Flow Simulations.

◮ Overall speedup of the order one-half of speedup for stationary
case.(this changed one day back, thanks to Thomas Bradley1)

◮ Program structure must be improved to avoid all/de-allocation of
memory every time step.

1Using nvidia-smi with the persistent load option for the driver makes the initial time
for loading the driver disappear.:)
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Comments/Suggestions/Questions

Theory is when you know everything but nothing works.
Practice is when everything works but no one knows why.
In reality theory and practice go hand in hand: Nothing usually works1

and no one knows why2 :)3

1*Existence requirement for Research.
2*Existence requirement for Research Candidate.
3Ergo! Another PhD project brought to life.
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Preconditioning - IP 1

M−1 = KK T , where K = (I − LD−1). (6)

Stencil for A = (−1,−1, 4,−1,−1). (7)

Corresponding Stencil for M−1 = (
1
4

,
1

16
,
1
4
,

9
8
,

1
4
,

1
16

,
1
4
) (8)

1. Drop the lowest terms (i.e. 1
16 ).

2. M−1 has the same sparsity pattern as A.
Degree of Parallelism for M−1r is N.

1
A Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform, M. Ament. PDP

2010
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Wall Clock Times Comparison.
Block-IC vs. Truncated Neumann.

Block-IC variants.

Small Speed-Up.

Truncated Neumann variants.

Large Speed-Up.
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