GPU TECHNOLOGY CONFERENCE

Fast High Quality Image and Video Background Removal with CUDA

Timo Stich | NVIDIA

C PU CONFERENCE

Motivation

Take a Picture

Image Segmentation (This Talk)

Play Golf in Ireland!

Photo Credits: Golf Girl, Bob Cotter; Cliffs of Moher, Peter Gorman, CC 2.0

Outline

- Interactive Segmentation
- Probabilistic Color Models
 - Gaussian Mixture Model
 - RGB Histogram
- Edge Aware Segmentation
 - Graph Cut (NPP Primitive)
- Summary

Interactive Segmentation

- User draws strokes to highlight FG and BG
- Intelligent computation of segmentation
- User corrects/refines with additional strokes until satisfied

C PU TECHNOLOGY CONFERENCE

PROBABILISTIC COLOR MODELS

Color Models from User Strokes

 Strokes define sets of pixels that are FG and BG

 Anchor the solution (spatial constraint)

 Sample of the Color Distributions (color constraint)

Gaussian Mixture Model

- N Gaussian blobs for each FG/BG
 - Very Accurate
 - Initialization Non-Trivial
 - Picking N wrong can lead to Overfitting
- Implementation Details
 - Compute Largest Eigenvector for Clustering
 - Reductions to compute the Means and Deviations
 - Code available in "GrabCut" SDK Sample

RGB Histogram Model

32x32x32 RGB Histogram for each FG/BG

- Less Accurate
- Simple Implementation
- Very Robust
- Implementation Details

- Accumulate Votes per Warp (___ballot, ___popc)
- GMEM Atomics
- Multiple Histograms, Reduce in second Kernel

Color Model Comparison

2.8 MP, GTX 680	Accuracy	Robustness	Simplicity	Performance
GMM	+	0	-	16 ms
Histogram	0	+	+	4.7 ms

GMM (N=4)

Histogram (32³)

C P U TECHNOLOGY CONFERENCE

EDGE AWARE SEGMENTATION

Computing the Segmentation

What we have:

- Probabilities for colors to belong to FG / BG
- Some pixels classified as FG / BG by the user
- A lot of pixels where we don't know the class

What we want:

- Classify all pixels as either FG or BG

Naïve Approach

- Classify according to Max Probability
 - $-L(x) : max(P_{FG}(C(x)), P_{BG}(C(x)))$
- Result:
 - Very noisy
 - Not High Quality

Edge Aware Segmentation

Problem with Naïve:

- Each pixel for itself
- No context information
- Intuition:
 - Segmentation boundaries should be at image edges
- Solution: Decision depends also on neighborhood labels
 - Similar Color Strong Coupling
 - Different Color Weak
 Coupling

Graph Cut Segmentation

Capacity ~ Neighbor Coupling

Graph Cut Segmentation

Minimal Cut <-> Edge Aware Boundary

NPP Graph Cut Primitive

- nppiGraphcut(8)_32(f/s)8u
- Computes Minimum Cut on Regular Graphs
 - One array for edges capacities for each direction (left, right, top bottom + diagonal dirs for 8 nbhd)
 - One array for connections to Source and Sink
 - Terminals = Source Sink

Returns 0/1 in 8u array -> BG/FG classification

Graph Cut Performance

Result:

- Noise free result
- Segmentation boundaries align well with image edges

2.8 MP	Quadro 6000 ^{1,2}	GTX 680 ^{1,2}	Core i7 @ 3 GHz ^{1,3}
4 Nbhd	47 ms	32 ms	460 ms
8 Nbhd	110 ms	72 ms	843 ms

1) Includes time for graph setup

2) NPP 5.0 (10-40% performance boost over 4.1)

3) Maxflow v3.01, Boykov et al, http://vision.csd.uwo.ca/code/maxflow-v3.01.zip

Update the Color Models

 Optionally use computed segmentation to improve the Color Models

Video Segmentation

Initialize the Color Model onceCompute Segmentation for each Frame

Summary

- Interactive Tool
- Probabilistic Color Model
- Edge Aware Segmentation

Code: GrabCut SDK Sample (under CUDALibraries)

GPU TECHNOLOGY CONFERENCE

BACKUP SLIDES

4/8 Neighborhood Comparison

4 Neighborhood

8 Neighborhood

CUDA Warp Vote Accumulation

while(1) {

*smem warpMaster = laneIdx;

warpMaster = *smem_warpMaster;

if(myKey == smem_keys[warpMaster]) {

ballot = ballot(1);

break;

myVote = ___popc(myBallot);