
© Copyright 2011 Hewlett-Packard Development Company, L.P. 1 © Copyright 2011 Hewlett-Packard Development Company, L.P.

David Lehavi & Sagi Schein

HP Labs Israel

FAST REGEX PARSING ON
GPUS

© Copyright 2011 Hewlett-Packard Development Company, L.P. 2

PLEDGE
• Although this is a lecture about GPUs, this is the only piece of cool graphics you’ll see:

(picture from Assassin’s Creed Revelations)

© Copyright 2011 Hewlett-Packard Development Company, L.P. 3

REGULAR EXPRESSIONS (RE)
• One of the most common programming languages.

o Standard syntax.

o Platform independent.

• Commonly used for “text crunching applications”:

o Security applications.

o Network monitoring.

o Database queries (SQL, Google’s BigTable, …).

• Common scenario: many strings & REs.
o Pitfall: high run-time variance.
o Throughput  run time are critical.
o Latency is not always critical.

.*a(bb)+a

© Copyright 2011 Hewlett-Packard Development Company, L.P. 4

Ken Thompson’s approach
REGEXS AN AUTOMATON

• Transform the regex to an automaton.

o Parse to an abstract syntax tree.

o “Translate” to an automaton

a

b

b

a

A
N

Y

b

.*a(bb)+a

* a +

concat

concat

b

anything

b

a

© Copyright 2011 Hewlett-Packard Development Company, L.P. 5

Using virtual machines
WHEN AUTOMATONS BECOME DATA

• Virtual machines are not always VMware, or JVM, or the likes of them.

• Virtual machine “runs” on

o the string (data)

o and a table representing the automaton (bytecode).

• Looks only at the next character.

• Maintaine “Front” of active states.

next next

a 1 ANY 0

b 2 - -

b 3 b 1

a End - -

cdabbbba

NFA byte code

Input string

VM

© Copyright 2011 Hewlett-Packard Development Company, L.P. 6

THE BOUNDARY BETWEEN VM AND
CODE

Universal Turing machine:

current = states[current, tape[place]]

place += increment[current]

Silly machine, smart byte code, slow, no branches  Can be parallelized assuming
cache and shared memory  GPU friendly.

Modern CPU:

Smart machine, silly byte code, fast, many (HW implemented) branches  not GPU
friendly.

Any hardware has it’s own sweetspot

In GPUs arithmetic is cheap, brunches are expansive

© Copyright 2011 Hewlett-Packard Development Company, L.P. 7

BRUNCHES VS INDICATORS
Instead of (bad - serialized divergent brunches)

if (s1[n] == s2[m])

 a[n,m] += match

else

 a[n,m] += mismatch;

Use an indicator (good - cheap arithmetic):
i = (s1[n] == s2[m]);
a[n,m] += match + i *(mismatch - match);

• Sometimes better on CPU (no brunch prediction), always better on GPUs

and SIMD (e.g. SSE).
• Exponential build-up , no precedence in evaluation.

© Copyright 2011 Hewlett-Packard Development Company, L.P. 8

MAP REDUCE HUNGRY PUPPIES WHAT IF…..

TASK PARALLELISM ON GPUS

• The abstract concept, not

Hadoop.

• Similar length tasks.

• Tasks distributed by map

• Data is collected and

“merged” by reduce.

• Varied length tasks

• No mapping/reduction is

needed.

• Each “puppy” takes more

“food” when it is done.

• More tasks than threads.

• map-reduce friendly

where reduction is:

o order free

o almost conflict free.

• Tasks:

o inherently iterative

o very different lengths. start
map

reduce

map

© Copyright 2011 Hewlett-Packard Development Company, L.P. 9

BALANCING MAP-REDUCE
Overcoming high runtime variance: from data to task parallelism

while (has task) {

 map free threads

 while (work_load < max and

 not finished) {

 perform one iteration

 work_load ++

 }

 reduce finished threads

}

• Far better than map reduce due to varying

task lengths

• Ideally max computed dynamically.

• Reduce is trivial for regexes.

Rescheduling is done
without quitting the kernel
code, all the data is still in

shared memory

Memory access is not
coalesced, but it is to

shared memory/cache, so
it doesn’t matter

Similar ideas were
explored in distributed

systems – different
problems/solutions

© Copyright 2011 Hewlett-Packard Development Company, L.P. 10

FEATURES AND BENCHMARK
• Ready to use C++ library (HP internal)

o All standard features: POSIX wildcards, ranges, sub- matches, Giga char strings,
greedy/non-greedy operators, Boyer Moore searches. Support for multiple cards.

• Benchmark data: two hundred strings (6K char each), 200 starting
points each, 36 REs, 5 Boyer-Moore (times are in sec).

o PCRE is considered to be the best regex engine.

o Latency is about 0.1 sec for search 0.2 sec for match.

o Memory upload total latency (with an ancient bus): 1-1.5 sec.

• Naïve extrapolation: 12U systems assuming full parallelization –
optimizing compute density

o Six HP Proliant SL390s, each is 4U/2 box, dual 6-core Xeons, 8 Nvidia Tesla M2090.

o Two HP blade system c3000, each is a 6U, 8 half blades of two 6-core Xeons.

o Compare 120 3.46Ghz Xeon5690 to 48 Tesla M2090.

1 thread PCRE

2.67Ghz Xeon

RegexGPU

Quadro 4000

1.44M RE 269.5 27.5 search

57.5 match

200K BM 1.6 0.032

performance /vol /Watt

RE match 4 1

RE search 8 2

Boyer Moor 50 10

