
Designing Killer CUDA Applications
for X86, multiGPU, and CPU+GPU

Rob Farber
Chief Scientist, BlackDog Endeavors, LLC

Author, “CUDA Application Design and Development”

Doctor Dobb’s Journal CUDA tutorials

OpenCL “The Code
Project” tutorials

Columnist

http://www.codeproject.com/
http://www.scientificcomputing.com/

Performance is the reason for GPUs

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

R
e

p
o

rt
e

d
 s

p
e

e
d

u
p

Ranked from highest to lowest speedup

Top 100 NVIDIA CUDA application showcase speedups as of
July, 2011

(Min 100, Max 2600, Median 1350)

http://developer.nvidia.com/cuda-action-research-apps

http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps

3

Supercomputing for the masses!
• Market forces evolved GPUs into massively parallel GPGPUs

(General Purpose GPUs).
• 300+ million CUDA-enabled GPUs says it all!
• CUDA: put supercomputing in the hands of the masses

– December 1996, ASCI Red the first teraflop supercomputer
– Today: kids buy GPUs with flop rates comparable to systems available

to scientists with supercomputer access in the mid to late 1990s
• GTX 560 $169 on newegg.com

Remember that Finnish kid who wrote some software to understand
operating systems? Inexpensive commodity hardware enables:

• New thinking

• A large educated base of developers

You can change the world!

4

CUDA + GPUs are a game changer!
• CUDA enables orders of magnitude faster apps:

– 10x can make computational workflows more interactive (even poorly performing GPU apps are

useful).
– 100x is disruptive and has the potential to fundamentally affect scientific research by removing

time-to-discovery barriers.
– 1000x and greater achieved through the use of the NVIDIA SFU (Special Function Units) or multiple

GPUs … Whooo Hoooo!

In this talk:

1. Two big ideas: SIMD, a strong scaling execution model
– A quick 12 slide trajectory from “Hello World” to approximately 400 teraflops of performance

2. Another big idea: tying data to computation: multi-GPU and scalable
workflows

3. Demonstrate simple real-time video processing on a mobile platform (an
NIDIA GPU in a laptop)

– Example code is a foundation for augmented reality, smart sensors, and teaching

Big idea 1: SIMD
High-performance from the past
• Space and power efficient
• Long life via a simple model

Observed Peak Effective Rate vs. Number of Ranger Cores

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000

Number of Barcelona cores

Ef
fe

ct
iv

e
Ra

te
 (T

F/
s)

5 Results presented at SC09 (courtesy TACC)

Farber: general SIMD mapping :

“Most efficient implementation to date”

(Singer 1990), (Thearling 1995)

The Connection Machine

 60,000 cores: 363 TF/s measured

62,796 cores: 386 TF/s (projected)

Works great on multi-core MPI systems!

Big idea 2
The CUDA strong scaling execution model!

• Four basic types of programming models:
– Language platforms based on a strong-scaling execution

model (CUDA and OpenCL™)

– Directive-based programming like OpenMP and OpenACC

– Common libraries providing FFT and BLAS functionality

– MPI (Message Passing Interface)

• Perfect strong scaling decreases runtime linearly by the
number of processing elements

http://www.nvidia.com/object/cuda_home_new.html
http://www.codeproject.com/Articles/110685/Part-1-OpenCL-Portable-Parallelism
file:///C:/Users/rkim/Desktop/define OpenMP
http://en.wikipedia.org/wiki/OpenACC
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/BLAS
http://en.wikipedia.org/wiki/Message_Passing_Interface

• Threads can only communicate within a thread block
– (yes, there are atomic ops)

• Fast hardware scheduling
– Both Grid and on SM/SMX

Scalability required to use all those
cores (strong scaling execution model)

If you know C++, you are already
programming GPUs!

//seqSerial.cpp
#include <iostream>
#include <vector>
using namespace std;

int main()
{
 const int N=50000;

 // task 1: create the array
 vector<int> a(N);

 // task 2: fill the array
 for(int i=0; i < N; i++) a[i]=i;

 // task 3: calculate the sum of the array
 int sumA=0;
 for(int i=0; i < N; i++) sumA += a[i];

 // task 4: calculate the sum of 0 .. N-1
 int sumCheck=0;
 for(int i=0; i < N; i++) sumCheck += i;

 // task 5: check the results agree
 if(sumA == sumCheck) cout << "Test Succeeded!" << endl;
 else {cerr << "Test FAILED!" << endl; return(1);}

 return(0);
}

//seqCuda.cu
#include <iostream>
using namespace std;

#include <thrust/reduce.h>
#include <thrust/sequence.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>

int main()
{
 const int N=50000;

 // task 1: create the array
 thrust::device_vector<int> a(N);

 // task 2: fill the array
 thrust::sequence(a.begin(), a.end(), 0);

 // task 3: calculate the sum of the array
 int sumA= thrust::reduce(a.begin(),a.end(), 0);

 // task 4: calculate the sum of 0 .. N-1
 int sumCheck=0;
 for(int i=0; i < N; i++) sumCheck += i;

 // task 5: check the results agree
 if(sumA == sumCheck) cout << "Test Succeeded!" << endl;
 else { cerr << "Test FAILED!" << endl; return(1);}

 return(0);
}

First two
examples in

Congrats on your first CUDA program!

• Thrust::transform_reduce()
– Uses a functor to operate on (transform) data
– Applies the reduction

 Surprise, you are now petascale to exascale
capable!

A general mapping: use thrust::transform_reduce()
 energy = objFunc(p1, p2, … pn)

(efficient on SIMD, SIMT, MIMD, vector, vector parallel, cluster, cloud)

10

Examples

0, N-1

Examples

N, 2N-1

Examples

2N, 3N-1

Examples

3N, 4N-1

Step 2

Calculate partials

Step 3

Sum partials to

get energy

Step1

Broadcast

parameters

Optimization Method

(Powell, Conjugate Gradient, Other)

GPU 1 GPU 2 GPU 3
p1,p2, … pn p1,p2, … pn p1,p2, … pn p1,p2, … pn

GPU 4

Host

Speedup over a quad core when learning XOR

OS Machine Opt method Precision

Ave obj func

time % func time

Speedup over

quad-core

Speedup over

single-core

Linux NVIDIA C2070 Nelder-Mead 32 0.00532 100.0 85 341

Win7 NVIDIA C2070 Nelder-Mead 32 0.00566 100.0 81 323

Linux NVIDIA GTX280 Nelder-Mead 32 0.01109 99.2 41 163

Linux NVIDIA C2070 Nelder-Mead 64 0.01364 100.0 40 158

Win7 NVIDIA C2070 Nelder-Mead 64 0.01612 100.0 22 87

Linux NVIDIA C2070 Levenberg-Marquardt 32 0.04313 2.7 10 38

Linux NVIDIA C2070 Levenberg-Marquardt 64 0.08480 4.4 6 23

Linux Intel e5630 Levenberg-Marquardt 32 0.41512 21.1

Linux Intel e5630 Levenberg-Marquardt 64 0.49745 20.8

Linux Intel e5630 Nelder-Mead 32 0.45312 100.0

Linux Intel e5630 Nelder-Mead 64 0.53872 100.0

11

#pragma omp parallel for reduction(+ : sum)
 for(int i=0; i < nExamples; ++i)
 {
 Real d = getError(i);
 sum += d;
 }

Code for CPU generated
by thrust

So simple it’s the MPI example in Chapter 10

12

FcnOfInterest objFcn(input);

energy = thrust::transform_reduce(

 thrust::counting_iterator<int>(0),

 thrust::counting_iterator<int>(nExamples),

 objFcn, 0.0f, thrust::plus<Real>());

• Dominant runtime of code that scales to 500 GPUs

Exascale capable!
• Over 350TF/s of performance on Longhorn (including communications!)

• Anybody willing to purchase 60,000 GPUs?
Observed Peak Effective Rate vs. Number of Ranger Cores

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000

Number of Barcelona cores

Ef
fe

ct
iv

e
Ra

te
 (T

F/
s)

Results presented at SC09 (courtesy TACC)

 60,000 cores: 363 TF/s measured

62,796 cores: 386 TF/s (projected)

From “first program” to petaflop
capability in 7 slides!
Applicable to real problems

The book provides
working code

• Locally Weighted Linear Regression
• Neural Networks
• Naive Bayes (NB)
• Gaussian Discriminative Analysis (GDA)
• k-means
• Logistic Regression (LR)
• Independent Component Analysis (ICA)
• Expectation Maximization (EM)
• Support Vector Machine (SVM)
• Others: (MDS, Ordinal MDS, etcetera)

CUDA 4.x makes multi-GPU much easier!

15

Host

In-parallel, utilize GPUs and x86 capabilities!

MultiGPU DGEMM

CPU

http://qe-forge.org/projects/phigemm/
(Ivan Girotto and Filippo Spiga)

G
FL

O
P

S

2 x Intel Xeon X5670
2.93GHz + 4 NVIDIA
Tesla C2050

0

100

200

300

400

500

600

700

800

900

1000

1100

1GPU 2GPUs 4GPUs

CUBLAS MKL

x 2.0 x 3.4

277

551

942 GF/s

(2 GPUs per PCI Bus!!)

M = K = N = 25000 (DP) = 15GBytes ->

GPU

CPU
System
provided
by

(matrix multiply)

Notice the size >> a
single GPU

http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/

Use “PTX prefetch” to increase the
effective memory bandwidth

• asm volatile ("prefetch.global.L2 [%0];"::"l"(pt));

• Use prefetch in a vector reduction:

Love those SFUs! (Special Function Units)

• Fast transcendental functions

– The world is nonlinear … so are our computational
models

– Estimated 25x faster than x86

TLP (Thread Level Parallelism)
Bet that at least one thread will
always be ready to run

– The more threads used, the better
the odds are that high application
performance will be achieved

ILP (Instruction Level Parallelism)
Choreograph the flow of
instructions for best parallelism
• Vasily Volkov has done some

nice work in this area

Use ILP to increase arithmetic performance

Thread 1 Thread 2 Thread 3 Thread 4

x = x + c y = y + c z = z + c w = w + c

x = x + b y = y + b z = z + b w = w + b

x = x + a y = y + a z = z + a w = w + a

TLP

In
stru

ctio
n

s ->

Thread

w = w + b Four independent

operations z = z + b

y = y + b

x = x + b

w = w + a Four independent

operations z = z + a

y = y + a

x = x + a

ILP

Kepler SMX with ILP

• Superscalar warp schedulers
– Can transparently exploit some ILP for the programmer

GTX 680

(Psst! GF104 like the Fermi GTX 460 has superscalar)

CUDA + Primitive Restart (a potent combination!)

Primitive restart: Looking forward to Kepler!
– A feature of OpenGL 3.1
– Roughly 60x faster than optimized OpenGL
– Avoids the PCIe bottleneck
– Variable length data works great!

23

LiDAR: 131M points 15 – 33 FPS (C2070)

In collaboration with Global Navigation Sciences (http://http://globalnavigationsciences.com/

http://http/globalnavigationsciences.com/
http://http/globalnavigationsciences.com/
http://http/globalnavigationsciences.com/

“CUDA is for GPUs “

24

“One source tree to hold them all and on the GPU
accelerate them!” (My parody of J.R.R. Tolkien)

and CPUs!

Wait a minute!

The top three reasons are…

2. Achieve the biggest return on your software investment
• One source tree saves money
• GPU acceleration comes for free
• CUDA is C/C++ based … not much of a change for many organizations

1. Market accessibility
• 1/3 Billion GPUs is a big market (Desktop, Mobile, …)
• The number of customers who own x86 hardware is much bigger

• (The cellphone/tablet SOC competition may accentuate this)

3. CUDA uses a “strong scaling” execution model
• Very important for scalability – use a million threads … okay!
• SIMD execution exploits x86 SIMD (e.g. SSE and AVX) instructions
• CUDA was designed to expose parallelism to the programmer

• Many legacy codes run faster after CUDA porting “experiments”
• CUDA async queues (standard) -> execution graphs to control many devices

If CUDA and GPUs are so great ….
Why consider x86 at all?

Observed Peak Effective Rate vs. Number of Ranger Cores

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000

Number of Barcelona cores

Ef
fe

ct
iv

e
Ra

te
 (T

F/
s)

If CUDA and GPUs are so great ….
Why consider x86 at all?

“CUDA is for GPUs “

26

CUDA source

PGI
CUDA-x86 SWAN

(CUDA to OpenCL
translation)

OpenCL

X86_64 CPU NVIDIA GPU AMD GPU

MCUDA
(CUDA to C
translation) Ocelot

(PTX to x86 emulation
and translation)

C

NVIDIA’s nvcc

and CPUs!
One source tree to hold them all and on the GPU accelerate them

ARM

Machine 1

App A

App B

App C

App D CPU

Lo
ad

-b
alan

cin
g

Sp
litter

App A

App B

App C

App D CPU

Machine 2

App A

App B

App C

App D CPU

Machine 3

Fast and scalable heterogeneous workflows

MIC and Kepler discussion
http://www.drdobbs.com/parallel/232800139

Full source code in my DDJ tutorial
http://www.drdobbs.com/parallel/232601605

http://www.drdobbs.com/parallel/232800139
http://www.drdobbs.com/parallel/232800139
http://www.drdobbs.com/parallel/232800139
http://www.drdobbs.com/parallel/232601605
http://www.drdobbs.com/parallel/232601605
http://www.drdobbs.com/parallel/232601605

Dynamically compile CUDA
(just like OpenCL) Without dynamic plugins With dynamic plugins

No scalability
Collaborators

need:
• All plugins
• For all machine

types

Scalable
Only need source for
the plugins required

Scalable
Only need source for
the plugins required

Scalable
Only need source for
the plugins required

No scalability
Collaborators

need:
• All plugins
• For all machine

types

No scalability
Collaborators

need:
• All plugins
• For all machine

types

No scalability
Collaborators

need:
• All plugins
• For all machine

types

dynFunc vec2x < stream.dat \
| ssh machine1 dynFunc app1 | dynFunc app2 \
| ssh machine2 dynFunc reduction

Full source for
Windows and Linux

in Part 23:
http://www.drdobbs.com/parallel/
232601605

dynFunc vec2x < stream.dat | dynFunc reduction.cc

http://www.drdobbs.com/parallel/232601605
http://www.drdobbs.com/parallel/232601605
http://www.drdobbs.com/parallel/232601605

A cool real-time video workflow
Mobile or desktop

• Smart sensors
• Augmented Reality
• Games
• Teaching

• Exascale video analysis
• Tablets, notebooks …

cellphones?

The entire segmentation method
__global__ void kernelSkin(float4* pos, uchar4 *colorPos,
 unsigned int width, unsigned int height,
 int lowPureG, int highPureG,
 int lowPureR, int highPureR)
{
 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
 int r = colorPos[y*width+x].x;
 int g = colorPos[y*width+x].y;
 int b = colorPos[y*width+x].z;
 int pureR = 255*(((float)r)/(r+g+b));
 int pureG = 255*(((float)g)/(r+g+b));
 if(!((pureG > lowPureG) && (pureG < highPureG)
 && (pureR > lowPureR) && (pureR < highPureR)
))
 colorPos[y*width+x] = make_uchar4(0,0,0,0);
}

For the demo, think Kinect and 3D morphing for augmented reality
(identify flesh colored blobs for hands)

Artifacts caused by picking
a colorspace rectangle
rather than an ellipse

Full source code provided in “CUDA Application Design and
Development” in print and on Kindle.

The Chinese edition is coming!
(interest in other translations?)

Available from many booksellers.
• Kindle version (color) is also

available)
http://www.amazon.com/CUDA-
Application-Design-Development-
Farber/dp/0123884268

Teaching aids (PowerPoint slides, code)
available on http://GPUcomputing.net/RobFarber

http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://gpucomputing.net/RobFaqrber

Chapter 12 real-time video example

• Note this demonstration is running on a
battery powered laptop.
– Think smart sensors

– Augmented Reality

– Many others!

• Laptop provided by NVIDIA
– Thank you!

