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Introduction Divide and Conquer

Results

With the advance of technology, modern sensors have become 

cheaper, smaller and more effective. Proportionately the amount of 

data collected grows exponentially. This growth is especially true in 

the field of Astronomy where modern telescopes can collect 

millions/billions of data-points in a single day. Observations are 

made in different wave lengths, at different times and from different 

locations and instruments, resulting in a large set of independent 

observations with variations based on what was observed by which 

instrument at what point in time. Figure 1 depicts a galaxy in 5 

different wavelengths, observed by 5 different surveys. One can 

immediately see the difference in intensity in different areas of the 

snapshots. For example observe the two high intensity spots off to 

the left in the VLA observation, now compare the same regions with 

the other surveys.
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Figure 1: An example of the same Galaxy in 5 different surveys and wavelengths

The first challenge in implementing cross-

matching is to adequately chunk the sky into pieces 

so that it parallelizes well on GPUs. As the end goal 

is to parallelize across not just one, but multiple 

GPUs, the chunking has to be effective at both the 

global and local scale of our processing pipeline.

The naïve approach to this problem would be 

comparing every datapoint of catalog A to every 

datapoint in catalog B. Lets remember that we are 

looking to identify common object across the 

catalogs. It is very unlikely that a common object is in 

completely different regions of the 2 catalogs. 

Gray et al. suggest in “There Goes the 

Neighborhood: Relational Algebra for Spatial Data 

Search”[1] and “The Zones Algorithm for Finding 

Points-Near-a-Point or Cross-Matching Spatial 

Datasets”[2] to map the catalogs into horizontal 

zones of a height zoneHeight, where zoneHeight is 

measured in archseconds. (see Figure 5)
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Figure 6: Reading, Splitting and Sorting of Catalogs into segments.

Figure 7: Job Manager holding the Job Queue and communicating with the worker threads

Figure 3: Excerpt of an overlapping region of the SDSS, GALEX and 2MASS surveys. Sources are color 

coded black, blue and red, respectively. The radii of each circle correspond to the astronomic uncertainties of 

σ=0.1, 0.5 and 0.8 arc seconds in the 3 surveys. Here we plot their 5σ contours for better visibility. 

computationally difficult and time consuming to cross-identify these 

objects. State-of-the-art systems such as SkyServer.sdss.org cross-

match 50m objects(GALEX) to 150m(SDSS) in 1 hour when 

parallelized across multiple CPUs. This problem is extremely 

computationally intensive, if we consider 2 catalogs, A and B, of size 

n and m, respectively, we need to make n*m comparisons. Which in 

this small case would be 7.5 Billion comparisons. We describe a 

method of doing a cross-match on 2 catalogs 3x larger in under 4 

minutes. That yields an over 40x speedup!

Figure 2: Example of cross-identifying the same object through several 

observations of the same survey

Cross-referencing or cross-

identifying common objects 

between multiple surveys can 

lead to the new discoveries and 

breakthroughs as each survey 

contributes its own unique 

datapoints.

The problem is correctly cross-

identifying the same objects 

across all different observations, 

taking into account all factors. 

Due to the growth in size of these 

datasets it has become 

increasingly 

Parallel on Multiple GPUs
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For each zone in Segment A, the worker thread launches as 

many kernels as there are zones within range θ in Segment B. 

Every thread of each of these kernel’s calculates the vector 

distance between a unique pair of object, one object from each 

segment. If the computed distance is below a certain threshold, the 

result is marked “found”. 

Many of the calculated distances will be greater than the 

threshold, resulting in a sparsely populated results array. We utilize 

this fact to minimize to data we need to return. In our current 

implementation we compact the “found” results after every kernel 

run into a global array using a parallel prefix scan as described in 

“Parallel Prefix Sum (Scan) with CUDA” by Mark Harris[3].

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1.25m 2.5m 5m 10m 20m

R
u

n
 t

im
e

 in
 m

s

Segment size in object count

Runtime vs Segment size

0

1

2

3

4

5

6

7

8

9

10

1.25m 2.5m 5m 10m 20m

Sp
e

e
u

p
 g

ai
n

e
d

Segment size by object count

Speedup vs Segment Size

0

200

400

600

800

1000

1200

1 2 3 4 5 6

R
u

n
ti

m
e

 in
 m

s

GPU count (Nvidia c2050)

Runtime vs. GPU count

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6

Sp
e

e
d

u
p

 G
ai

n
e

d

GPU count (Nvidia c2050)

Speedup in relation to GPU count

References

Our results show an incredible 45x speedup over the previous 

best implementation based on multi CPU performance on SQL 

Server. Our speedups are slightly sub-linear, but that can be 

expected as the overhead of controlling worker threads grows, 

speedups decrease. 

The larger the segment size we can keep in memory the better 

we perform on a same size problem. This is due to the overhead of  

launching sorters and passing jobs back and forth. Theoretically 

Nvida c2050s support 2 segments of 50 million objects, but we ran 

into glitches with our kernels and the overhead required by the 

Thrust library for sorting and copying segments. This is a work-in-

progress.

In the future we would like to attempt adding dynamic segment 

size scaling based on the memory of available GPUs. We also aim 

to have a public release of version 1.0 in the near future. Please 

email us if you are interested.
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From here on we move to the parallel implementation.

We start by dividing the catalog into multiple segments so 

that 2 segments can fit on 1 GPU at a time. We then 

utilize the Thrust library to sort each segment by 

declination(see Figure 6) to allow us to break each 

segment into zones.

Next we create Jobs. Each Job is a unique match 

between one segment of catalog A and one segment of 

catalog B, such that all combinations are covered. Ex: 

SegA_0 x SegB_0, SegA_0 x SegB_1 and so on.

These Jobs are passed off to the Job manager which 

stores them in a Job Queue. The Job Manager is the 

entity which provides jobs to each processing thread. 

When a processing thread finishes a Job it requests a 

new one. To optimize memory transfers, between the host 

and the device, the Job Manager prefers to give out Jobs 

based on which segments are left in memory from the 

previous Job, therefore cutting down duplicate transfers.
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Figure 5: a Catalog divided up into Segments and Zones. Also visible is our object O and its search radius θ.

O θ

If we aim to find all matches within a radius θ of object O, we find the min. and max. zone enclosing 

our search radius in the range of declination:

minZone = [(dec - θ) / zoneHeight]

maxZone = [(dec + θ) / zoneHeight]

In Figure 5 minZone and maxZone would be Zone_1 and Zone_3. We also compute the search radius 

bounds in the range of RA(right ascension). Given the min and max Zones as well as the RA range, we 

have successfully narrowed our search field.
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