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We present recent developments in implementing 3D GPU-accelerated 

eletromagnetic particle-in-cell particle updates in the plasma physics 

framework VORPAL.  The primary challenge in PIC methods on GPUs is 

thread contention during the current deposition stage:  we resolve these thread 

contentions by sorting particles into ‘tiles’ of many cells each time step.  

Multiple thread blocks may be assigned to each tile, and each block 

accumulates the contribution to the deposition  field from a moderate number of 

particles via an optimized unsegmented Esirkepov 1st-order scheme.   These 

buffers are then written back to global field mesh via atomic operations.   We 

have observed performance increases of 20-25x over CPU-based VORPAL 

implementations for fully self-consistent double-precision electromagnetic PIC 

simulations using Tesla C2070 GPUs, corresponding to update times of 25 ns 

per particle (for electrostatic simulations) and 50 ns per particle (for 

electromagnetic simulations).  We have seen little degradation in performance 

between hot and cold plasmas, or between uniform plasmas and dense plumes. 

Abstract 

VORPAL is a massively-parallel, highly-flexible plasma and EM modeling 

framework (http://vorpal.txcorp.com).   VORPAL currently supports GPU-

acceleration of Finite Difference Time Domain (FDTD) methods, including Dey-

Mittra algorithms for 2nd-order accuracy  for complex cut-cell geometries. FDTD 

is a highly-scalable, explicit algorithm for modeling time-dependent EM 

problems. The Dey-Mittra algorithm is an extension of FDTD to enable 2nd order 

accuracy for complex cut-cell geometries. This enables highly accurate, yet time 

efficient simulations of  devices like RF cavities (IEEE Microwave and Guided 

Wave Letters, 7 (9), 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VORPAL also supports Just-in-Time compilation of user-defined initial and 

boundary conditions, using the CUDA driver API to dynamically load generated 

kernels at runtime. 

VORPAL 

In a PIC approach, the O(N2) problem that would lead to a full solution of  

Maxwell’s equations is transformed into an O(N) problem by introducing 

discretized  field meshes.    

 

 

 

 

 

 

 

 

 

 

 

 

 

•Primary challenge on a GPU: thread contention in the deposition step 

•A 1st-order particle writes to between 12 and 48 field values in an EM 

simulation 

•In principle, all particles can deposit to the same field values 

 

 

 

Particle-in-Cell Methods 

Step 1:   For each thread block, store tile data and relevant particles in shared 

memory.  Each thread (x,y) will accumulate current in registers for all (x,y,z)  

nodes in the tile 

 

 

 

 

 

 

 

 

 

 

Step 2:  Iterate over buffered particles.   For each particle, thread (x,y) computes 

deposition for relevant (x,y,z) nodes via floating-point-heavy Esirkepov  

cofactor functions (to avoid thread divergence). 

 

 

 

 

 

 

 

 

 

 

 

Step 3:  Add accumulated currents to global grid via thread-safe atomicAdd() 

 

 

 

 

Deposition Kernel 

For a particle with initial relative position (rx,ry,rz) and final relative position 

(rx’, ry’, rz’), such that 0 < rx < Nx, where Nx is the number of cells in the x-

direction, the current density Jx at Yee mesh node (i,j,k) is given by 

 

 Jx[i,j,k] = C * SDx[i](rx,rx’) * (½*Sy[j](ry)*Sz[k](rz’) +      Sy[j](ry’)*Sz[k](rz’) 

                    +    Sy[j](ry)*Sz[k](rz)  + ½*Sy[j](ry’)*Sz[k](rz)) 

 

Jy and Jz are cyclic permutations.  Where C is a constant based on the charge of 

the particle, the grid spacing, and the time step, and S is a transverse cofactor 
 

  (1-(rd-i))  if floor(rd) = id 

Sd[id](rd) = (rd-o)      if ceiling(rd) = id 

  0          else 

 

Which can be re-written to avoid if-statements by using min and max functions 

 
 Sd[i,rd] = min( max( 1 - rd + id, 0), max(rd - id + 1, 0) ) 

 

SDd[id](rd,rd’) is the longitudinal cofactor, and can be written as an expression 

that depends on whether the particle crossed a cell boundary in the d-direction 
 

  (1-(rd’-id)) if (id = floor(rd)-1) and (Δd < 0 ) 

SDd
-[id](rd,rd’) =  (rd-id)      if (id = floor(rd) ) and (Δd < 0 ) 

  (rd’-rd)      if (id = floor(rd) ) and (Δd = 0 ) 

  (1-(rd-id))  if (id = floor(rd) ) and (Δd > 0 ) 

  -(rd’-id)       if (id = floor(rd)+1 ) and (Δd > 0 ) 

  0  else 

 (Where Δd is the change in the particle’s cell index in the d direction) 

 

Which can similarly be re-written to avoid if-statements 

 
 SDd[id,rd,rd’] = sign(rd’-rd)*( min(1 + id, max(id, max(rd,rd’) ) ) 

  - max( id, min( id + 1, min(rd,rd’) ) ) ) 

 
 

Esirkepov Current Deposition 
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Field 

Particle push 
(particles to particles) 

GPU Update Sequence 

π-Mode of a Project X Cavity shown through 

|E| on cavity walls. Simulation was done on 2 

NVIDIA FERMI 2070 GPUs. 

GPU-Accelerated FDTD Simulations 

in VORPAL show excellent scaling 

across multiple GPUs using a hybrid 

MPI-CUDA scheme. 

 

2nd order accuracy for Dey-Mittra algorithm in 

case of Spherical resonator 

A profile of the code indicates that the 

majority of time is spent in the 

deposition step, and not in the particle 

push or sorts. 

Performance 
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Accumulating Jx and Jy values for each particle.  Some thread warps may be 

inactive for a given particle,  and will start processing another particle 

Particles (sorted by tile) 
overlaid on global grid 

Tile and ghost cells added to 
global current density grid 

MPI Boundary 

Add per-thread block currents 
to Global Deposition Fields 

Particles buffered in shared memory.  Jx and Jy stored in registers 

 

 

 

 

 

 

 

 

 

•3D Performance is nearly equal for cold and hot plasmas. Performance 

actually slightly increases for inhomogeneous plasmas like particle plumes, 

•Multi-GPU performance is severely limited by un-optimized MPI messaging 

scheme designed for conventional CPU simulations 

•Primary area  of ongoing development 

•Additional future work:   support for 2nd-order Esirkepov schemes and 

complex cut-cell boundaries 

 

 

Performance and Future Work 

This scheme is implemented for: 

•3D Electostatic PIC 
•8 deposits, 6 interpolations per particle 

•3D Electromagnetic PIC 
•12-48 deposits , 6 interpolations per particle 

•3D Delta-F Electromagnetic PIC 
•12-48 deposits, 12 interpolations per particle 

•Requires evaluating a Maxwellian  

distribution of particle phase space. 

Interpolate from Electric 
and Magnetic Fields 
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