
GPU-Accelerated 3-D Electromagnetic

Particle-in-Cell Implementations in VORPAL

K. Amyx (Tech-X Corporation)

We present recent developments in implementing 3D GPU-accelerated

eletromagnetic particle-in-cell particle updates in the plasma physics

framework VORPAL. The primary challenge in PIC methods on GPUs is

thread contention during the current deposition stage: we resolve these thread

contentions by sorting particles into ‘tiles’ of many cells each time step.

Multiple thread blocks may be assigned to each tile, and each block

accumulates the contribution to the deposition field from a moderate number of

particles via an optimized unsegmented Esirkepov 1st-order scheme. These

buffers are then written back to global field mesh via atomic operations. We

have observed performance increases of 20-25x over CPU-based VORPAL

implementations for fully self-consistent double-precision electromagnetic PIC

simulations using Tesla C2070 GPUs, corresponding to update times of 25 ns

per particle (for electrostatic simulations) and 50 ns per particle (for

electromagnetic simulations). We have seen little degradation in performance

between hot and cold plasmas, or between uniform plasmas and dense plumes.

Abstract

VORPAL is a massively-parallel, highly-flexible plasma and EM modeling

framework (http://vorpal.txcorp.com). VORPAL currently supports GPU-

acceleration of Finite Difference Time Domain (FDTD) methods, including Dey-

Mittra algorithms for 2nd-order accuracy for complex cut-cell geometries. FDTD

is a highly-scalable, explicit algorithm for modeling time-dependent EM

problems. The Dey-Mittra algorithm is an extension of FDTD to enable 2nd order

accuracy for complex cut-cell geometries. This enables highly accurate, yet time

efficient simulations of devices like RF cavities (IEEE Microwave and Guided

Wave Letters, 7 (9), 1997).

VORPAL also supports Just-in-Time compilation of user-defined initial and

boundary conditions, using the CUDA driver API to dynamically load generated

kernels at runtime.

VORPAL

In a PIC approach, the O(N2) problem that would lead to a full solution of

Maxwell’s equations is transformed into an O(N) problem by introducing

discretized field meshes.

•Primary challenge on a GPU: thread contention in the deposition step

•A 1st-order particle writes to between 12 and 48 field values in an EM

simulation

•In principle, all particles can deposit to the same field values

Particle-in-Cell Methods

Step 1: For each thread block, store tile data and relevant particles in shared

memory. Each thread (x,y) will accumulate current in registers for all (x,y,z)

nodes in the tile

Step 2: Iterate over buffered particles. For each particle, thread (x,y) computes

deposition for relevant (x,y,z) nodes via floating-point-heavy Esirkepov

cofactor functions (to avoid thread divergence).

Step 3: Add accumulated currents to global grid via thread-safe atomicAdd()

Deposition Kernel

For a particle with initial relative position (rx,ry,rz) and final relative position

(rx’, ry’, rz’), such that 0 < rx < Nx, where Nx is the number of cells in the x-

direction, the current density Jx at Yee mesh node (i,j,k) is given by

 Jx[i,j,k] = C * SDx[i](rx,rx’) * (½*Sy[j](ry)*Sz[k](rz’) + Sy[j](ry’)*Sz[k](rz’)

 + Sy[j](ry)*Sz[k](rz) + ½*Sy[j](ry’)*Sz[k](rz))

Jy and Jz are cyclic permutations. Where C is a constant based on the charge of

the particle, the grid spacing, and the time step, and S is a transverse cofactor

 (1-(rd-i)) if floor(rd) = id

Sd[id](rd) = (rd-o) if ceiling(rd) = id

 0 else

Which can be re-written to avoid if-statements by using min and max functions

 Sd[i,rd] = min(max(1 - rd + id, 0), max(rd - id + 1, 0))

SDd[id](rd,rd’) is the longitudinal cofactor, and can be written as an expression

that depends on whether the particle crossed a cell boundary in the d-direction

 (1-(rd’-id)) if (id = floor(rd)-1) and (Δd < 0)

SDd
-[id](rd,rd’) = (rd-id) if (id = floor(rd)) and (Δd < 0)

 (rd’-rd) if (id = floor(rd)) and (Δd = 0)

 (1-(rd-id)) if (id = floor(rd)) and (Δd > 0)

 -(rd’-id) if (id = floor(rd)+1) and (Δd > 0)

 0 else

 (Where Δd is the change in the particle’s cell index in the d direction)

Which can similarly be re-written to avoid if-statements

 SDd[id,rd,rd’] = sign(rd’-rd)*(min(1 + id, max(id, max(rd,rd’)))

 - max(id, min(id + 1, min(rd,rd’))))

Esirkepov Current Deposition

© 2012 Tech-X Corporation

Work supported by Tech-X Corporation
NVIDIA GPU Technology Conference

May 14th – May 17th, 2012

Electric, magnetic
fields

Fields values at
particle positions

Updated particle
positions, velocities

Charge, current
density fields

Field solvers
(grids to grids)

Field

Particle push
(particles to particles)

GPU Update Sequence

π-Mode of a Project X Cavity shown through

|E| on cavity walls. Simulation was done on 2

NVIDIA FERMI 2070 GPUs.

GPU-Accelerated FDTD Simulations

in VORPAL show excellent scaling

across multiple GPUs using a hybrid

MPI-CUDA scheme.

2nd order accuracy for Dey-Mittra algorithm in

case of Spherical resonator

A profile of the code indicates that the

majority of time is spent in the

deposition step, and not in the particle

push or sorts.

Performance

1 2 3 4 5 6 7 8

1 1 2 2 2 4 4 4

1 2 3 4 5 6 7 8

2 1 2 3 2 3 4 N

2 3 1 5 6 4 7 8

1 2 2 2 3 3 4 N

Sorted Particle Data

Tile

Updated Particle

Updated Tile

Sort By Tile

Update particles
from fields

3 3 4 4

3 3 4 4

1 1 2 2

1 1 2 2

1 2 3 4 5

1 2 2 4 4

2 2 1 2 1

Determine starting index of boundary
particles, copy to MPI buffers as needed

Thread block

Tile number

Particles in block

Deposit to
fields by tiled
thread blocks

Particle

Tile

1 2 3 4 5 6 7 8 Updated Particle Data

1 2 3 4

1 3 4 4

Determine index of first
particle per tile

Assign threads blocks to tiles
(ex: 2 particles per block per tile)

Tile

Particle start index

(MPI Buffers)

Particles moving in a domain
with tiles of 2x2 cells

Particle

Tile

Sort Particles By Tile

Add Particles from sources or other
MPI ranks at beginning of timestep

(MPI Buffers)
(Particle Sources)

1 2 3 4 5 6 N N

1 1 2 2 4 4 4 2
MPI Boundary

Accumulating Jx and Jy values for each particle. Some thread warps may be

inactive for a given particle, and will start processing another particle

Particles (sorted by tile)
overlaid on global grid

Tile and ghost cells added to
global current density grid

MPI Boundary

Add per-thread block currents
to Global Deposition Fields

Particles buffered in shared memory. Jx and Jy stored in registers

•3D Performance is nearly equal for cold and hot plasmas. Performance

actually slightly increases for inhomogeneous plasmas like particle plumes,

•Multi-GPU performance is severely limited by un-optimized MPI messaging

scheme designed for conventional CPU simulations

•Primary area of ongoing development

•Additional future work: support for 2nd-order Esirkepov schemes and

complex cut-cell boundaries

Performance and Future Work

This scheme is implemented for:

•3D Electostatic PIC
•8 deposits, 6 interpolations per particle

•3D Electromagnetic PIC
•12-48 deposits , 6 interpolations per particle

•3D Delta-F Electromagnetic PIC
•12-48 deposits, 12 interpolations per particle

•Requires evaluating a Maxwellian

distribution of particle phase space.

Interpolate from Electric
and Magnetic Fields

Related Work
(1) Xianglong Kong, Michael C. Huang, Chuang Ren, Viktor K. Decyk, Particle-in-cell simulations with charge-conserving current deposition on graphic processing units, Journal of Computational

Physics, Volume 230, Issue 4, 20 February 2011, Pages 1676-1685, ISSN 0021-9991, 10.1016/j.jcp.2010.11.032.
 Villasenor-Buneman current deposition for 2D PIC implementation within the OSIRIS framework

(2) (2) Abreu, P.; Fonseca, R.A.; Pereira, J.M.; Silva, L.O.; , "PIC Codes in New Processors: A Full Relativistic PIC Code in CUDA-Enabled Hardware With Direct Visualization," Plasma Science, IEEE
Transactions on , vol.39, no.2, pp.675-685, Feb. 2011

 Esirkepov current deposition for a 2D GPU PIC code
(3) Burau, H., Widera, R., HÃ¶nig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M. PIConGPU: A fully relativistic particle-in-cell code for a GPU cluster

(2010) IEEE Transactions on Plasma Science, 38 (10 PART 2), art. no. 5556015, pp. 2831-2839.
 Relativistic PIC for a GPU cluster

(4) Stantchev, G., Dorland, W., Gumerov, N. Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU (2008) Journal of Parallel and Distributed Computing, 68 (10), pp. 1339-
1349.

 O(N) complexity charge deposition for PIC on GPU using an in-place particle sorting algorithm

http://vorpal.txcorp.com/
http://vorpal.txcorp.com/
http://vorpal.txcorp.com/
http://vorpal.txcorp.com/
http://vorpal.txcorp.com/
http://vorpal.txcorp.com/
http://vorpal.txcorp.com/

