
printed by

www.postersession.com

Feature Extraction Process Software Sequence

GPU Based Feature Extraction Implementation
Haofeng Kou, Weijia Shang, Jike Chong, Ian Lane

Santa Clara University & Carnegie Mellon University

MFCC

The mel-frequency cepstrum (MFC) is a representation of the short-term power
spectrum of a sound, based on a linear cosine transform of a log power spectrum on
a nonlinear mel-scale of frequency.
MFCCs are coefficients that collectively make up an MFC

 CPU: processor : 4
 model name : Intel(R) Core(TM)2 Quad CPU Q8300 @ 2.50GHz
 cpu MHz : 2003.000
 cache size : 2048 KB

 GPU: GeForce GTX 460 CUDA @ SCU
 CUDA Driver Version / Runtime Version 4.0 / 4.0
 CUDA Capability Major/Minor version number: 2.1

 OS: 2.6.31-14-generic #48-Ubuntu SMP Fri Oct 16 14:05:01 UTC 2009
x86_64 GNU/Linux

 ubuntu 9.10 karmic
 gcc version 4.4.1 (ubuntu 4.4.1-4ubuntu8)

 Date: 12/09/2011

Porting the x86/GPU based Feature Extraction to the SOC platform which means most likely
the code will be ported to the ARM SOC with GPU build-in, for example the Tegra with GPU
from Nvidia or the TI OMAP5 with GPU and so on.

Besides CUDA, OpenCL and OpenGL are also on the list of evaluation.

GPU Computing
 Multicore: yoke of oxen

 Each core optimized for executing a single thread
 Manycore: flock of chickens

 Cores optimized for aggregate throughput, deemphasizing individual
performance

CUDA & OpenCL
 CUDA is a recent programming model, designed for

 Manycore architectures
 Wide SIMD parallelism
 Scalability

 CUDA provides:
 A thread abstraction to deal with SIMD
 Synchronization & data sharing between small groups of threads

 CUDA programs are written in C + extensions
 OpenCL is the open standard for parallel programming of heterogeneous systems

HW Architecture of GPU

SW Computing Model of CUDA
Single Instruction Multiple Data
architectures make use of data parallelism

 A program consist of a sequential CPU program running multiple parallel kernels
running on GPU
 Kernel is SIMD – with multiple threads

GPU based Feature Extraction shows up to about 25 times faster than CPU version for large
amount of frame data.

The similar implementation could be used for other signal processing software to improve
performance.

BACKGROUND DETAIL IMPLEMENTATION RESULTS

CONCLUSIONS

FUTURE WORKS

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

SISD

a b

c

a2a1 b2b1

c2c1

+ +
SIMD
width=2

…

KernelThread Block

Remove DC
component

ZMean
Frame

Calculate
Log Raw
Energy

Pre-
emphasis

Hamming
Windowing

Calculate
Log Energy FFT

Mel Filtering
on Mel

Frequency
Domain

Make MFCC
DCT

Weight
Cepstrum

Delta, Delta-
Delta

Requirement Analysis
 Size of data

 Input: 400 samples per frame
 Output: 13 Cepstral coefficients

 Hardware limitation
 Geforce GTX 460 @ SCU
 Shared Memory per Block 49 Kbytes
 7 (MP) x 48 (Cores/MP) = 336 (Cores)

Design Analysis
 Make Full Use of Shared Memory

 400 Float Data =1200 bytes, 50KBytes /4 (Warps)≈12
Kbytes /Block

 Minimize Data Transfer
 One kernel for each stage of MFCC
 Shared Memory life cycle—the execution of one block
 One kernel for the whole MFCC extraction
 Some threads are left idle, yet it saves the time for data

transfer.
 Explore Maximum Concurrency

 Do multiple frames’ MFCC extraction together

Implementation
 Each block for one frame MFCC
 Number of frames loaded in GPU is designed as a variable
 MFCC Parameter Used:

 Preemphasis: α=0.97
 Windowing: use hamming window.
 Number of Mel channels=24

 Computational bottleneck is FFT
 Use SPIRAL Generated CUDA Code

Challenge 1:
 Optimization of GPU memory usage
 There are several different data need to be passed into the

GPU Kernel function, in order to achieve the best
performance, some data need to be loaded from global
memory to shared memory and the number/size of shared
variables need to be carefully designed. For example, the
following are shared for frames:
 MFCC configuration parameter values
 Work area for MFCC computation
 Workspace for filterbank analysis

 The following are for each frame:
 Windowed waveform data
 Filterbank data

Solution 1:
 Try to move as much data as possible into shared memory if

there is enough space.
 After shared memory reach its limit, sorting the data by how

frequency are they being used, and move the less used data
out of shared memory.

 The windowed waveform data is the major input data, make
a copy in shared memory, keep the temp data (for example
RE, IM, FB…) also in shared memory.

Challenge 2:
 GPU performance tuning strategy
 This is a general topic for all GPU CUDA code and every

CUDA programmer, sooner or later, does face this issue.

Solution 2:
 Optimize the GPU memory usage – as mentioned in the

solution 1.
 Re-use the local, shared, register variables as more as it can,

which will save space, but need to be carefully on the coding
to rule out the life-time of each variable and make sure there
is no overlap, and if there is overlap, how to prevent race
condition.

 Try to replace the heavy operation with light weight ones, for
example the atomic operation normally cost more, and it can
be replaced by using a different data structure or different
implementation approach. Another example is to avoid the
table lookup, replace it with on-fly computing.

 Try to use the fast math API instead of the heavy ones.
 Remove the unnecessary __syncthreads().
 Reuse the piece of code which are called often, for example

the fast VTLN implementation.
 For the case of using double buffer, use them properly to

prevent unnecessary buffer sync.

VTLN Interface
 Basing on different VTLN alpha input, the feature extraction

code generates different MFCC.
 The calculation inside Kernel up to FFT part is optimized to

execute once for different VTLN alpha.

Num. Frames
CPU Program

(msec)
GPU Program

(msec)
Ratio

(Tcpu / Tgpu)

1 0.57 <0.1 >5.7
5 0.81 <0.1 >8.1
10 1.1 <0.1 >11
20 1.69 0.1 16.9
50 3.46 0.2 17.3
100 6.41 0.3 21.4
250 15.26 0.6 25.4
500 28.11 1.2 23.4
1000 53.85 2.3 23.4

	Slide Number 1

