
GHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics
Shuji Suzuki1, Takashi Ishida1 and Yutaka Akiyama1

1 Graduate School of Information Science and Engineering, Tokyo Institute of Technology

Abstract
Background:
A large number of sensitive homology searches are required for mapping DNA sequence
fragments to known protein sequences in public and private databases during metagenomic
analysis. BLAST[1] is currently used for this purpose, but its calculation speed is insufficient,
especially for analyzing the large quantities of sequence data obtained from a next-
generation sequencer. However, faster search tools, such as BLAT[2], do not have sufficient
search sensitivity for metagenomic analysis. Thus, a sensitive and efficient homology search
tool is in high demand for this type of analysis.
Methodology:
 We developed a new, highly efficient homology search algorithm suitable for graphics
processing unit (GPU) calculations that was implemented as a GPU system that we called
GHOSTM[3]. The system first searches for candidate alignment positions for a sequence from
the database using pre-calculated indexes and then calculates local alignments around the
candidate positions before calculating alignment scores. We implemented both of these two
processes on GPUs. The system achieved calculation speeds that were 165 and 438 times
faster than BLAST with 1 GPU and 4 GPUs.
Conclusions:
 We developed a GPU-optimized algorithm to perform sensitive sequence homology
searches and implemented the system as GHOSTM. Currently, sequencing technology
continues to improve, and sequencers are increasingly producing larger and larger quantities
of data. This explosion of sequence data makes computational analysis with contemporary
tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool
as a potential solution to this problem.

Overview of the method

Construction of database indexes

Local alignment

Results

Acknowledgment

Evaluation of search accuracy

Database : KEGG gene.pep (2.0GB)
Query : metagenomic data of soil microbes (60~75 bp, 10,000 reads)

•The search accuracy of GHOSTM was clearly higher than that of BLAT.
•The search accuracy of GHOSTM was lower than that of BLAST, especially for those hits

whose scores were below 40. However, low scoring hits (e.g., < 50) are generally not
used in practice because such hits can occur by chance. With the exception of the low
score hits, GHOSTM successfully identified more than 90% of the hits identified by
SSEARCH. This suggests that GHOSTM is sufficiently accurate for general usage.

To evaluate the search
accuracy, we used the
search results obtained
with the Smith-Waterman
local alignment method
implemented in SSEARCH,
and these results were
assumed to be the correct
answers. We analyzed the
performance of a particular
method in terms of the
fraction of its results that
corresponded to the
correct answers obtained
by SSEARCH.

Evaluation of computing time

0

100

200

300

400

500

GHOSTM

（1GPU）

GHOSTM

（4GPU）

BLAST
(4 thread)

BLATA
cc

el
er

at
io

n
 r

at
io

 w
it

h
 r

es
p

ec
t

to
 t

h
e

B
LA

ST
 1

 t
h

re
ad

Database : KEGG gene.pep (2.0GB)
Query : metagenomic data of soil microbes (60~75 bp, 100,000 reads)

•The GHOSTM with 1 GPU achieved a calculation speed 165.1 times faster than BLAST.

•The GHOSTM with 1 GPU achieved a calculation speed 4.1 times faster than BLAT .

•The GHOSTM program with 4 GPUs achieved a calculation speed 437.6 times faster than

BLAST.

This research was supported in part by HPCI STRATEGIC PROGRAM in Computational Life Science and
Applications in Drug Discovery and Medical Development by MEXT of Japan, Cancer Research
Development Funding by the National Cancer Center of Japan and the CUDA COE Program by NVIDIA.

Search for alignment candidates

1.Indexes for database is constructed beforehand.
2.The candidate alignment positions for a sequence from the database are found by using the

indexes.
3.The local alignments are calculated around the candidate positions using the Smith –

Waterman algorithm.
4.The alignments are sorted by the alignment scores and the alignments are outputted as

results.

ARDCQE・・・・ ・・・$ $ $

K= 4 K-mer offset

ARDC 0,・・・

RDCQ 1,・・・

DCQE 2,・・・

Index

• Sequences are connected with
inserting delimiters, to make a
long DB sequence.

• And then, every offset of k-mer
in DB sequence are added the
index

• The DNA query sequences were initially translated into protein sequences in all six open
reading frames.

• The index keys of protein sequences were generated in the same way as the database
indexes but with s characters skips.

• For checking matches, a database sequence was first divided into regions of size r, and the
key of each query was compared with the keys of the database sequences. If more than a
threshold number t of keys matched in a region and the right adjacent region, the position
was stored as a candidate alignment.

• After searching for alignment positions, optimal local alignment was performed for the
region around each candidate position using the Smith-Waterman algorithm, and the
alignment score for each candidate position was calculated. When calculating the local
alignment, we restricted the alignment target of a database sequence to a small region of
size m + 2r + 2e.

DB sequence

Q
u

e
ry

r

Search seeds

Candidate positions

Q
u

e
ry

DB sequence

ｍ

m+2r ee

Candidate positions

• The size of the memory on a GPU is small. Furthermore, we could not know, a priori, the
number of candidates and the size of the results to be stored when we generated a
candidate for a large number of queries. Consequently, storage of the results often failed
because of the shortage of GPU memory. To overcome this problem, The processing is
performed as follows.

1.Count the number of candidates at the alignment position
2.Divide the queries into subqueries whose results could be store in the GPU.

• A thread was assigned to each candidate alignment position and synchronization among
threads was removed.

• All threads randomly and frequently accessed the scoring matrix. Thus, the matrix data
were stored on the texture memory of a GPU because the access speed was much faster
than the global memory of a GPU.

References
1.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, Basic local alignment search tool,

Journal of molecular biology, 215:403-10, 1990
2.Kent WJ, “BLAT---The BLAST-Like Alignment Tool”, Genome Research, 12(4):656-664, 2002
3.S. Suzuki, T. Ishida, Y. Akiyama,“ Fast short DNA sequence mapping on GPUs”, IPSJ-SIG

Technical Report, 2010-BIO-21(30), 1-6, 2010.

Counting candidates

Searching alignment candidates

Storing candidates

Local alignment

Sorting by alignment scores

・・・

GPU threads

Queries

・・・candidates

GPU threads

・・・

・・・

・・・Alignments

results

Reading queries

HiSeq2000
© illumina

Metagenomic samples

