
GPU Clusters for Large-Scale Analysis of X-ray Scattering Data

Abhinav Sarje • Jack Pien • Xiaoye Li
Lawrence Berkeley National Laboratory • Berkeley • CA

X-ray scattering is a valuable tool for measuring the structural

properties of materials used in the design and fabrication of

energy-relevant nanodevices that are key to the reduction of car-

bon emissions. Although today’s X-ray scattering detectors can pro-

vide raw information on structural properties of nanoparticles, a pri-

mary challenge remains in the analysis of this data due to its size.

We are developing novel high-performance computing algorithms and

codes for such analyses. Here we present two such HPC advances:

1.a Wexible Grazing Incidence Small Angle Scattering (GISAXS)

simulation code based on the Distorted Wave Born Approxi-

mation (DWBA) theory. This code can compute the scattered light

intensity from any given sample in all directions of space.

2.an eXcient inverse modeling code for structural Vtting prob-

lems using Reverse Monte Carlo (RMC) simulation algorithm.

Distorted Wave Born Approximation

• Studying complex nanostructures requires solving for form factors

in a high-resolution Q-grid resulting in matrices with ∼ 107 to 1010

q-points.

• This time-consuming and memory-demanding step is a major bot-

tleneck in GISAXS simulations.

DWBA is the only theoretical frame-

work which models the GISAXS pro-

cess. It deVnes scattering intensity of

the X-rays as:

I(~q) ∝ |F (~q)|2

F (~q) is the form factor of a q-point ~q,

computed as an integral over the shape function S(~r) of the nanopar-

ticles. For computational purposes, the shape surface is triangulated

and the form factor is approximated as a summation over resulting N

triangles, with surface area of triangle t = st:

F (~q) =

∫
S(~r)

ei~q·~rd~r ≈

N∑
t=1

ei~q·~rst

Below are analytically computed example form factor intensity im-

ages for simple shapes.

Computing Form Factors on GPUs

• Given: A 3-D Q-grid of resolution nx× ny × nz, triangulated shape

surface (set of N triangles.)

• Task: Generate 3-D matrix M of size nx × ny × nz where each

M(i, j, k) = F (qi, qj, qk) = F (~qi,j,k)

th
r
e
a
d

 b
lo

c
k

T0

T2

T3

T4

T1

T5

Q-grid

nx

Phase1
• Compute inner term, Ftl(~q) =

ei~q·~rstl for each triangle tl.

• Store in a 4-D matrix MI of size

nx × ny × nz ×N .

• Decompose computations along

triangles: each thread mapped to

a unique triangle.

thread block

block

M

Ti,j,kq
i,j,k map

nznx

ny

Phase2
• Decompose M into a grid of 3-D

blocks, Mb, each corresponding to a

CUDA thread block.

• For each q-point ~qi,j,k, a thread

Ti,j,k computes Mb(i, j, k) = F (~q) =∑N
l=1Ftl(~qi,j,k), generating Mb.

hyperblock

ht

hyperblocks corresponding

to a single block

N

h
nz

nx

ny

HandlingMemory Limitations

• DecomposeMI along all dimensions

into 4-D hyperblocks,Mh.

• Each hyperblock results in a partial

sum inM . All partial sums for a block

are reduced later.

tile

nzp

M1,0

M0,0

M0,1

M1,1

nx

nyp

nyp

nzp

UtilizingCluster of GPUs

• Decompose M along y and z into tiles, as a

higher level of parallelism.

• Use MPI across GPU nodes.

• Tile Mi,j is assigned to processor Pi,j.

ChoosingHyperblock Size

 10 20 30 40 50 60 70 80 90 100

y-dimension

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

z-
di

m
en

si
on

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60

y-dimension

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

z-
di

m
en

si
on

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120
• Crucial for per-

formance: demon-

strated by heat

maps of runtimes

(seconds) with vary-

ing sizes.

• Q-grid size is 100×

200× 200, and N1 = 2, 292 and N2 = 91, 753, respectively.

PerformanceResults

 10

 100

 1000

 10000

 100000

2,292 6,600 91,753

T
im

e
[s

]

Triangles (Q = 100 x 200 x 200)

Sequential
GPU

 0.1

 1

 10

 100

 1000

12 4 8 12 16 24 30 36 42

T
im

e
[s

]

GPU Nodes

N=91,753
N=6,600
N=2,292

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8 12 16 24 30 36 42

S
pe

ed
up

GPU Nodes

N = 2,292
N = 6,600

N = 91,753

 10

 100

 1000

 10000

 100000

 1e+06

2,292 6,600 91,753

T
im

e
[s

]

Triangles (Q = 100 x 800 x 800)

Sequential
GPU

 1

 10

 100

 1000

 10000

12 4 8 12 16 24 30 36 42

T
im

e
[s

]

GPU Nodes

N=91,753
N=6,600
N=2,292

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8 12 16 24 30 36 42

S
pe

ed
up

GPU Nodes

N = 2,292
N = 6,600

N = 91,753

Reverse Monte Carlo Modeling on GPU

• Information on material structure from Small Angle X-ray Scatter-

ing (SAXS) data, consisting of 2-D images, is extracted using RMC.

• Involves ∼ 106 iterations, each with ∼ 104 Fourier transformations.

•Given: SAXS image asN×N array

I , and random particle array A.

• Task: Compute structure factor F 2
n

Vtting input image.

Initialization: Compute F0 = FFT(A), F 2
0 = cws(F).

Simulation Steps
jo

io

jn

in U = _
1. Randomly move a particle

from (io, jo) to (in, jn).

2. Compute update to the

Fourier transform, new structure factor, and χ2 error (D = DFT ma-

trix, cws = component-wise square):

U = dft2(io, jo, in, jn) = D(j, in) ·D(jn, i)−D(j, io) ·D(jo, i),

Fn = Fn−1 + U, F 2
n = cws(Fn), χ2

n =
∑
i,j

(I(i, j)− F 2
n(i, j))

• Decompose array computations into 1-D grid of thread blocks, each

thread computing one element in the N ×N matrices.

• Observed about 900x speedup over a sequential Matlab code.

Acknowledgements

This research has used resources of the National Energy Research ScientiVc Computing Center,

which is supported by the OXce of Science of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231. The GISAXS geometry diagram and scattering intensity images are from A.

Meyer’s gisaxs.de. The GISAXS & SAXS data are provided by Slim Chourou and Alexander Hexemer.

References
1.G. Renaud, R. Lazzari, and F. Leroy. Probing surface and interface morphology with grazing inci-

dence small angle x-ray scattering. Surface Science Reports, 64:255–380, 2009.

2. R. McGreevy and L. Pusztai. Reverse monte carlo simulation: A new technique for the determina-

tion of disordered structures. Molecular Simulation, 1:6:359–367, 1998.

3. A. Scholz and A. Hexemer. Reverse Monte Carlo in Matlab/Jacket. Private communication, 2011.

