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X-ray scattering is a valuable tool for measuring the structural

properties of materials used in the design and fabrication of

energy-relevant nanodevices that are key to the reduction of car-

bon emissions. Although today’s X-ray scattering detectors can pro-

vide raw information on structural properties of nanoparticles, a pri-

mary challenge remains in the analysis of this data due to its size.

We are developing novel high-performance computing algorithms and

codes for such analyses. Here we present two such HPC advances:

1.a Wexible Grazing Incidence Small Angle Scattering (GISAXS)

simulation code based on the Distorted Wave Born Approxi-

mation (DWBA) theory. This code can compute the scattered light

intensity from any given sample in all directions of space.

2.an eXcient inverse modeling code for structural Vtting prob-

lems using Reverse Monte Carlo (RMC) simulation algorithm.

Distorted Wave Born Approximation

• Studying complex nanostructures requires solving for form factors

in a high-resolution Q-grid resulting in matrices with ∼ 107 to 1010

q-points.

• This time-consuming and memory-demanding step is a major bot-

tleneck in GISAXS simulations.

DWBA is the only theoretical frame-

work which models the GISAXS pro-

cess. It deVnes scattering intensity of

the X-rays as:

I(~q) ∝ |F (~q)|2

F (~q) is the form factor of a q-point ~q,

computed as an integral over the shape function S(~r) of the nanopar-

ticles. For computational purposes, the shape surface is triangulated

and the form factor is approximated as a summation over resulting N

triangles, with surface area of triangle t = st:

F (~q) =

∫
S(~r)

ei~q·~rd~r ≈

N∑
t=1

ei~q·~rst

Below are analytically computed example form factor intensity im-

ages for simple shapes.

Computing Form Factors on GPUs

• Given: A 3-D Q-grid of resolution nx× ny × nz, triangulated shape

surface (set of N triangles.)

• Task: Generate 3-D matrix M of size nx × ny × nz where each

M(i, j, k) = F (qi, qj, qk) = F (~qi,j,k)
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• Compute inner term, Ftl(~q) =

ei~q·~rstl for each triangle tl.

• Store in a 4-D matrix MI of size

nx × ny × nz ×N .

• Decompose computations along

triangles: each thread mapped to

a unique triangle.
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Phase2
• Decompose M into a grid of 3-D

blocks, Mb, each corresponding to a

CUDA thread block.

• For each q-point ~qi,j,k, a thread

Ti,j,k computes Mb(i, j, k) = F (~q) =∑N
l=1Ftl(~qi,j,k), generating Mb.
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HandlingMemory Limitations

• DecomposeMI along all dimensions

into 4-D hyperblocks,Mh.

• Each hyperblock results in a partial

sum inM . All partial sums for a block

are reduced later.
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UtilizingCluster of GPUs

• Decompose M along y and z into tiles, as a

higher level of parallelism.

• Use MPI across GPU nodes.

• Tile Mi,j is assigned to processor Pi,j.

ChoosingHyperblock Size
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• Crucial for per-

formance: demon-

strated by heat

maps of runtimes

(seconds) with vary-

ing sizes.

• Q-grid size is 100×

200× 200, and N1 = 2, 292 and N2 = 91, 753, respectively.

PerformanceResults
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Reverse Monte Carlo Modeling on GPU

• Information on material structure from Small Angle X-ray Scatter-

ing (SAXS) data, consisting of 2-D images, is extracted using RMC.

• Involves ∼ 106 iterations, each with ∼ 104 Fourier transformations.

•Given: SAXS image asN×N array

I , and random particle array A.

• Task: Compute structure factor F 2
n

Vtting input image.

Initialization: Compute F0 = FFT(A), F 2
0 = cws(F ).

Simulation Steps
jo

io

jn

in U = _
1. Randomly move a particle

from (io, jo) to (in, jn).

2. Compute update to the

Fourier transform, new structure factor, and χ2 error (D = DFT ma-

trix, cws = component-wise square):

U = dft2(io, jo, in, jn) = D(j, in) ·D(jn, i)−D(j, io) ·D(jo, i),

Fn = Fn−1 + U, F 2
n = cws(Fn), χ2

n =
∑
i,j

(I(i, j)− F 2
n(i, j))

• Decompose array computations into 1-D grid of thread blocks, each

thread computing one element in the N ×N matrices.

• Observed about 900x speedup over a sequential Matlab code.
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