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Diderot! A Parallel Domain Specific Language!
for Image Analysis and Visualization!

Introduction 
Diderot is a parallel domain-specific language that is designed for biomedical image-
analysis and visualization algorithms and provides a high-level mathematical programming 
model [2]. Diderot allows domain experts to implement familiar image analysis and 
visualization algorithms directly. The mathematical style of Diderot also makes it a great 
candidate for educational settings where students may not have time to learn more complex 
methods. Since Diderot is a domain-specific language, it achieves good performance on a 
range of parallel platforms, without requiring knowledge about parallel programming. This 
removes the burden of forcing programmer to learn low-level details of various target 
platforms but rather focus on implementing their algorithms. 

Future Work!
• Add a CUDA backend 
• Expand the range of supported algorithms  and targeted platforms 
• Allow strands to interact and communicate with each other 
• Allow dynamic creation of strands 
• Add a global computation phase 
• Type inference and dimension polymorphism 

•  vr-lite: simple volume-render with 
Phong shading running on CT scan 
of hand 

• illust-vr: fancy volume-renderer 
with illustrative shading running on 
CT scan of hand 

• lic2d: line integral convolution in 
2D running on synthetic data  

Performance !
Our test platform are an 8-core MacPro with 2.93 GHz Xeon X5570 processors (SSE-4), 
and a Linux machine box with NVIDIA Tesla C2070.  The graph below compares four 
versions of benchmarks: Teem/C, Sequential Diderot, Parallel Diderot, and GPU Diderot.  

To hide memory latency, we run multiple workgroups per GPU compute 
unit and get even better performance. These can also be adjusted 
dynamically by the runtime.  

Example Applications!

Line Integral Convolution [1]. This LIC was created using the midpoint integration method, with 
coloration indicating curl. The pieces of Diderot code shown below were selected to illustrate the 
structure of the program used to create this LIC. 

field#2(2)[2]	  V	  =	  load(“vectors.nrrd")	  ⊛	  bspln3;	  
field#0(2)[]	  R	  =	  load(“noise.nrrd")	  ⊛	  tent;	  
strand	  LIC	  (int	  xi,	  int	  yi)	  {	  

	  vec2	  p	  =	  [xi,yi];	  
	  output	  real	  sum	  =	  0;	  
	  update	  {	  
	   	  p	  +=	  h*normalize(V(p	  +	  
	   	   	   	  0.5*h*normalize(V(p)))); 	  	  

	  	  	  	  	  	  	  sum	  +=	  R(p);	  
	   	  if	  (step	  ==	  stepMax)	  {stabilize;}	  
	  }	  

}	  

initially	  [	  LIC(xi,	  yi)	  |	  yi	  in	  0..(imgSizeY-‐1),	  xi	  in	  0..(imgSizeX-‐1)	  ];	  

Parallelism model!
•  A Diderot program is composed of a collection of autonomous strands (lightweight 
threads) that perform independent computations on a continuous tensor field 
•  Each strand has its own local state and an update method, which encapsulates the 
computational kernel of the algorithm 
•  All strands have access to global variables, including input images and tensor fields  
•  Computational kernels are expressed using common concepts and direct-style notation 
of tensor calculus. For example: 

• Tensor Operations (+, -, •, ×, ⊗) 
• Tensor Field Operations (+, -, ∇, ∇×, ∇⊗) 
• Convolving (⊛) images with various univariate kernels (e.g., tent and bspln3)  

•  Programs execute in a bulk synchronous fashion with each strand updated in each step 
•  Strands terminate by either 

•  stabilizing, in which case their state contributes to the output 
•  dying, in which case the strand’s state is discarded 

Illustrative volume rendering of a CT scan 
[3, 4]. This illustrative volume rendering of a 
CT scan of a human hand is a typical example 
of a possible application for Diderot. Every 
strand computes a separate ray integral in 
parallel, one per pixel of the output image. The 
final image was colored with a curvature-based 
transfer function involving second derivatives 
of the data. 
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Program Execution 
Diderot currently supports multiple backends (vectorized C and OpenCL) and runtimes 
(Sequential C, Parallel C, and OpenCL). The sequential C version executes on a single CPU 
core, while the parallel C runtime executes with threads on multiple CPU cores. The GPU 
runtime uses the OpenCL API and is discussed in further detail below.  

The host side converts all necessary image data and strand data into their OpenCL 
representations and loads them onto the GPU. The figure below illustrates one execution 
step for the GPU implementation. The update kernel calls the update function on each 
active strand (colored in green). After execution, strands may stabilize (colored in blue), die 
(colored in grey) or remain active. Since the update functions for stable and dead strands 
are not executed in future iterations, there is a potential for divergence. We solve this 
problem by running a compaction kernel after the update kernel. The compaction kernel 
handles reordering strands within their blocks so active strands remain in the front and 
stable and dead strands are placed at the end.  

Persistent Thread Scheduler !
One of the challenges with developing Diderot for GPUs was determining how strands 
would execute on the GPU to incur good performance.  Initially each strand was mapped to 
a single work-item with each workgroup having the size of a single warp. This direct 
mapping works well when strands stabilize synchronously because this limits the number of 
idle work-items. But this approach does not scale well for other algorithms Diderot will 
support, such as fiber tractography and particle systems. With these algorithms, irregular 
workloads  (i.e. a mixture of active, stable, and dead strands) can occur.  The current 
implementation now includes the idea of persistent threads [5]. The idea is to launch 
enough work-items to fill the machine once and keep them alive for the entire kernel 
execution. This allows workgroups to continuously grab work off  a queue within the same 
kernel call and avoids the need for global synchronization.  

As shown below, each workgroup runs a warp-wide strand block. Each strand block 
contains a warps worth of strands and meta-information about the number of active, stable, 
and dead strands. Workgroups will execute the update methods for each strand in the strand 
block. Once all work items are done executing, the workgroup grabs another warp-wide 
strand block until there are no remaining blocks.  
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