

Ultrafast Multipinhole SPECT Iterative Reconstruction Using CUDA-based GPU Computing

GTC 2012 San Jose, CA

F. Alhassen¹, J. D. Bowen¹, H. Kudrolli², B. Singh², R. G. Gould¹, V. V. Nagarkar², Y. Seo¹ ¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA, fares.alhassen@ucsf.edu ²Radiation Monitoring Devices, Inc., Watertown, MA, USA

We have developed an ultrafast SIR method for multipinhole SPECT programmed in CUDA and tested using a high performance graphic processing unit. We show significant performance improvement in reconstruction using both computer-generated and experimental sinograms, demonstrating an up-to fifty-fold speed enhancement with virtually the same accuracy as the CPU-based SIR (with 0.15% normalized root mean square error).

Motivation

Why use GPUs for statistic iterative reconstructions (SIRs)? [1]

What's new here?

- · GPU-based SIR for multipinhole SPECT
- using pre-computed system matrix Implemented using CUDA / CUSPARSE [3]
- GPU computing API
- · Models finite pinhole aperture

CPU vs. GPU Implementations

Why multipinhole SPECT?

in dynamic studies and reduce motion artifacts [2]

single pinhole or parallel hole SPECT

High resolution with increased sensitivity compared to

Simultaneously acquired multiple views enhance accuracy

Hardware / Method		GPU
Processing cores	l core of a AMD Opteron 6128 2.0 GHz CPU	448 cores of a NVIDIA Tesla M2070 GPU
RAM	16 GB	6 GB
Sparse matrix operations (projections)	Eigen 3.0 [4]	CUSPARSE 1.0 [5]
Rotation, correction, and reduction operations	C++ functions	CUDA kernels

Maximum-likelihood expectation maximization (MLEM) MLEM SIR algorithm Ray-tracing $\hat{\mathbf{L}}=\hat{\mathbf{L}}^{t}$ Yes 1 $\hat{\mathbf{L}}^{1} = (1 \ 1 \ \cdots \ 1)^{2}$ $\hat{\mathbf{L}}_{i}^{i} = R(\hat{\mathbf{L}}_{i}^{i})$ Multipinho Legend Ļ L' Activity estimate for the *i*th iteration Correct current estimate Rotation operation \hat{L}_{R} Rotated activity $\hat{\mathbf{L}}^{i+1} = \mathbf{Y}^i + \mathbf{V} \circ \hat{\mathbf{L}}^i$ $\overline{\mathbf{X}}_{R}^{i} = \mathbf{P} \widehat{\mathbf{L}}_{R}^{i}$ System matrix K', Estimated project l Î Measured projection Rotate back and reduce to a single Correction Normalization $\mathbf{Y}^{i} = \sum_{k=1}^{M} R' (\mathbf{Y}_{k}^{i})$ $_{R}^{i} = \mathbf{P}^{T} \left(\mathbf{X}_{R} + \overline{\mathbf{X}}_{R}^{i} \right)$ Transpose operation Element-wise multip Element-wise divisio Ray tracing is faster on GPU System matrix generation

SIR Setup

Projections from experimental acquisitions

phantom [7]

Reconstructions Settings

Pinhole aperture	Phantom dimensions (voxels)	Sinogram dimensions (pixels)	Sub-pixels per pixel	Pinhole pixels per sub-pixel	Number of rays	System matrix size (MB)
Ideal	643	256² x 60	32	1	589,824	76
Finite	643	256 ² x 60	32	52	14,745,600	952-1072

Benchmarking

Pinhole aperture	Computational element	Ray tracing (s)	Average per iteration (s)	All iterations (s)	Total reconstruction (s)	GPU speed enhancement	NRMSE (%)
Ideal	CPU	6.31	10.26	513.20	527.05	07.05	0.15
	GPU	0.62	0.23	11.60	14.15	37.25	
Finite	CPU	197.68	47.3	2365.14	2586.02	47.71	1.24E-4
	GPU	13.30	0.78	38.86	51.20		
Finite (Mouse heart phantom)	CPU	356.47	60.79	3039.44	3421.37		4.50E-6
	GPU	23.11	0.83	41.28	66.47	37.25	

Reconstruction Accuracy

References

Pratx, G.; Chinn, G.; Olcott, P. D.; and Levin, C. S.; "Fast, Accurate and Shift-Varying Line Projections for Iterative 1

- 2.
- Prats, G.; Chum, G.; Olcott, P.D.; and Levrn, C. S.; "Fast, Accurate and Shith-Varying Line Projections for Iterative Reconstruction Using the GPU." *Medical Imaging: IEEE Transactions on*, vol 28, pp. 43-45, March 2009. Xu, F.; "Fast Implementation of Iterative Reconstruction with Exact Ray-Driven Projector on GPUs," *Tsinghua Science & Fechomology*, vol. 15, pp. 30–35, 2010. Han, G.; Liang, Z.; You, J.; "A fast my-training technique for TCT and ECT studies," Nuclear Science Symposium, 1999. Conference Record: 1999 IEEE, vol.3, no., pp. 1515-1518 vol.3, 1999. Eigen, http://eigen.tus/Lamily.org/index.php?title=Man_Page, 2011. Naamov, M.; "CUSPNASE: Linnary, A set of Basic: Linnar Algebra Subroutines for Sparse Matrices," GPU 3
- Technology Conference, 2070, Sept. 23, 2010.
- 6. Segars, W. P.; Tsui, B.M.W.; Frey, E. C.; Johnson, G. A.; and Berr, S. S.; Development of a 4D digital mouse phantom 7
- for molecular imaging research. Molecular Imaging & Biology, vol. 6, issue 3, p. 149-159, 2004. Alhasen, F.; Kudrolli, H.; Singh, B.; Kim, S.; Seo, Y.; Gould R. G.; and Nagarkar, V. V.; "A preclinical SPECT camera with depth-of-interaction compensation using a focused-cul scintillator," Proc. SPIE 7961, 796121 (2011).

