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Raptor Code principle

Raptor Code come as an improvement to LT-Code, which performs as
close as possible to the Shannon’s channel limit and provides linear
encoding and decoding time. It has been chosen for the forward error
correction (FEC) scheme in 3GPP and DVB-H standards. The blow block
diagram shows the systematic Raptor encoder and decoder.
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At the encoding side, d denotes the input vector of the Raptor encoder, and
contains K source symbols and (S + H) zero symbols.

dyppy=[2" 7]7 , where L=K+ S+ H
Code Constrains Processor multiplies d with the inverse of the
preprocessor matrix A to produce the intermediate symbols c.

oy =A™ 1 * Aoy
LT Encoder can generate any number of encoded symbols e, such that
Girec=epny
At the decoding side, we exchanges the positions of Code Constraints
Processor and LT Encoder.
o1y = [27€7] ° Aty and tox1)= Gir® Clo1

Matrix Inversion on CPU

The code profiling of Raptor Code shows that the inversion of the
preprocessor matrix A contributes more than 90% of the decoding time, so
we concentrate on the optimization of matrix inversion algorithm. The
most common matrix inversion algorithm is Gaussian Elimination (GE) ,
50 we 1mplement GE in Ga101s Fleld GFSZ) on CPU als follows:
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Matrix Inversion on GPU

We try to implement Raptor Codes on GPU for the purpose of processing
large block and symbol size efficiently. Recommended by the 3GPP and
DVB-H standard, the maximum block size is 8192, and maximum symbols
size is 8192 bytes. For the large matrix, we use two types of data to memory
mapping . One is “WORD,” which uses 32-bit word to store 1 bit matrix
element, and the other is “PACKED WORD,” in which 32 matrix elements
are packed together into a single 32-bit word.
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Performance

Our test platform uses a 3.20 GHz Intel Core i7 quad-core CPU, a
GeForce GTX 570 graphic card with 2.5 GB video memory, CUDA 4.0
and the Fedora 13 operating system. For large block size and symbol
size, the speedup of PACKED WORD version decoding can approach 36,
and the speedup of WORD version decoding can approach 46.
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