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Raptor Code principle  
Raptor Code come as an improvement to LT-Code, which performs as 
close as possible to the Shannon’s channel limit and provides  linear 
encoding and decoding time. It has been chosen for the forward error 
correction (FEC) scheme in 3GPP and DVB-H standards. The blow block 
diagram shows the systematic Raptor encoder and decoder. 
 
 
 
 
 
 
 
 
 
 
 
 
At the encoding side, d denotes the input vector of the Raptor encoder, and 
contains K source symbols and (S + H) zero symbols.  

d[0:L-1] = [zT  tT]T  , where L = K + S + H 
Code Constrains Processor multiplies d with the inverse of the 
preprocessor matrix A to produce the intermediate symbols c.  

c[0:L-­‐1]	
  =	
  A-­‐1	
  L×L	
  �	
  d[0:L-­‐1]	
  
LT Encoder can generate any number of encoded symbols e, such that 

GLT	
  �	
  c	
  =	
  e[0:N-­‐1]	
  
At the decoding side, we exchanges the positions of Code Constraints 
Processor and LT Encoder.  

c[0:L-­‐1]	
  =	
  [zT	
  e’T]	
  �	
  A-­‐1	
  M*L	
  	
  	
  	
  and	
  	
  	
  	
  t[0:K-­‐1]	
  =	
  GLT�	
  c[0:L-­‐1]	
  	
  	
  	
  	
  
 
Matrix Inversion on CPU 
The code profiling of Raptor Code shows that the inversion of the 
preprocessor matrix A contributes more than 90% of the decoding time, so 
we concentrate on the optimization of matrix inversion algorithm. The 
most common matrix inversion algorithm is  Gaussian Elimination (GE) , 
so we implement GE in Galois Field GF(2) on CPU as follows:  
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Performance  
Our test platform uses a 3.20 GHz Intel Core i7 quad-core CPU, a 
GeForce GTX 570 graphic card with 2.5 GB video memory, CUDA 4.0 
and the Fedora 13 operating system.  For  large block size and symbol 
size,  the speedup of PACKED WORD version decoding can approach 36, 
and the speedup of WORD version decoding can approach 46.  
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Fig. 2. Block diagram of the systematic Hard Raptor Codes

allows for successful decoding when only the first K encoded
symbols (K is the number of source symbols in a block) have
been received and no errors are detected in the channel.

The output vector e, containing N symbols, generated by
the encoder is received by the decoder across the channel as
input vector e′, containing N ′ (K ≤ N ′ ≤ N) encoded sym-
bols (which may be nonconsecutive). Vector e′ is padded with
S +H zeroes to dimension it to (M = N ′ +S +H). Starting
with (N ′ − K), the value of N ′ is iteratively incremented to
make the code constraints preprocessor matrix A invertible.
The difference (N ′−K) is equal to or greater than the number
of received encoded symbols lost in the channel. The decoding
is performed according to (1) and (2), where GLT is a LT
generator matrix with the dimension of K ×L. All operations
are performed in Galois Field GF(2).

c[0:L−1] = [zT e′T ] · A−1
M×L (1)

t[0:K−1] = GLT · c[0:L−1] (2)

At the decoder side, the submatrix GLT (1..N ′) is first
built from the input data. The sequence number of the nth

received encoded symbol is used to generate the nth row of
the submatrix GLT (1..N ′) through the LT encoding process.
Further details can be found in [9], [3], [4].

III. MATRIX INVERSION ALGORITHMS

The most common matrix inversion algorithm is Gaussian
Elimination (GE). It involves row exchange and row XOR
operations. An example of GE for Galois Field GF(2) is
shown on Fig. 3. The structure and simplicity of the algorithm
allow for greater design freedom and optimization. That is
valid even to a greater extend when it comes to its hardware
implementation. As we will show, GE benefits greatly from
the proposed parallel scalable architecture.

The SA technique, proposed in [3], [4], on the other hand,
aims at reducing the row XOR operations by introducing
some additional column exchange operations. It complicates
the algorithm, but reduces the amount of memory accesses.
An example of the SA algorithm is shown in Fig. 4.

SA algorithm has three phases. In Phase one, it tries to
convert as big portion of the matrix as possible, to an identity

Fig. 3. Example of GE algorithm

matrix, through a minimum number of row XOR operations.
In Phase two, whatever portion that is left after this phase on
the right side of the original matrix, is split in two, and the
lower part of it is converted into identity matrix, through the
Gaussian elimination. Phase three completes the inversion by
reducing the matrix to the form of an identity matrix. The first
line of Fig. 4 shows the form of the matrix after each of the
three phases.

 

 

 

 

Fig. 4. Example of SA algorithm

IV. RESULTS AND DISCUSSION

This section compares and analyzes the performance, power
and energy dissipation of various implementations of system-
atic Raptor decoder. Two separate implementations, for each of
SA and GE matrix inversion and vector decoding algorithms,
are under consideration: a pure software - on the soft core
NIOS II processor platform, and a pure hardware - on the
parallel scalable hardware architecture proposed in this paper,
as show in Fig. 5. The encoded symbol vector is processed
in parallel with the matrix to reduce the required memory
footprint and to avoid the need for post matrix multiplications.

In Fig. 5 the Avalon switch fabric uses a slave port to allow
the NIOS II processor to configure the Control Registers, that
initialize the hardware accelerator. During the initialization,
the size and initial addresses for the matrix and the vectors
are set. The Control Registers also control the operations of
the hardware, like initiating START and STOP commands.
The hardware accelerator block uses an Avalon master port
to access the whole memory mapped address space of the
NIOS II processor, send interrupts to NIOS II and receive
interrupts from other peripheral devices. For a more flexible
design Row & Column Exchange Logic, and Row XOR Logic
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Matrix Inversion on GPU 
We try to implement Raptor Codes on GPU for the purpose of processing 
large block and symbol size efficiently.  Recommended by  the 3GPP and 
DVB-H standard, the maximum block size is 8192, and maximum symbols 
size is 8192 bytes. For the large matrix, we use two types of data to memory 
mapping . One is  “WORD,” which uses 32-bit word to store 1 bit matrix 
element, and the other is  “PACKED WORD,” in which 32 matrix elements 
are packed together into a single 32-bit word.  
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allow for greater design freedom and optimization. That is
valid even to a greater extend when it comes to its hardware
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