Linjia Hu! Todor Mladenov? Saeid Noshabadi'

1Department of Computer Science, Michigan Technological University, MI, USA

2 Department of Information and Communication and Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, South Korea

Introduction

Implementation

Conclusion

Raptor Code principle

Raptor Code come as an improvement to LT-Code, which performs as
close as possible to the Shannon’s channel limit and provides linear
encoding and decoding time. It has been chosen for the forward error
correction (FEC) scheme in 3GPP and DVB-H standards. The blow block
diagram shows the systematic Raptor encoder and decoder.

i
i
|
i

%g"" S e ([
i

i K| e i
i
! i
| Code Constraints Processor LT Encoder -1 ,,,J
i Systematic Raptor Encoder ! ‘
;r Systematic Raptor Decoder ol
! LT Decoder Code Constraints Processor |
! L K S H L
| . O
! i
-t © G 1] |
! i
| W |
! |

At the encoding side, d denotes the input vector of the Raptor encoder, and
contains K source symbols and (S + H) zero symbols.

dyppy=[2" 7]7 , where L=K+ S+ H
Code Constrains Processor multiplies d with the inverse of the
preprocessor matrix A to produce the intermediate symbols c.

oy =A™ 1 * Aoy
LT Encoder can generate any number of encoded symbols e, such that
Girec=epny
At the decoding side, we exchanges the positions of Code Constraints
Processor and LT Encoder.
o1y = [27€7] ° Aty and tox1)= Gir® Clo1

Matrix Inversion on CPU

The code profiling of Raptor Code shows that the inversion of the
preprocessor matrix A contributes more than 90% of the decoding time, so
we concentrate on the optimization of matrix inversion algorithm. The
most common matrix inversion algorithm is Gaussian Elimination (GE) ,
50 we 1mplement GE in Ga101s Fleld GFSZ) on CPU als follows:

3 1 0 1 1)

1) 0 1 O 0)1 1 0 11 1
0/1 11 0 11 1 00 11
11 1 1/ 0 0 1/=\0 0 0 1
100 1)1 0 01 1 0 00
0 1 1)1 0 1 0>0 01 0 0
0 0 11 00 1)1 0010
0 0 0 1/ 0 0<1/=\0 0 0 1

Matrix Inversion on GPU

We try to implement Raptor Codes on GPU for the purpose of processing
large block and symbol size efficiently. Recommended by the 3GPP and
DVB-H standard, the maximum block size is 8192, and maximum symbols
size is 8192 bytes. For the large matrix, we use two types of data to memory
mapping . One is “WORD,” which uses 32-bit word to store 1 bit matrix
element, and the other is “PACKED WORD,” in which 32 matrix elements
are packed together into a single 32-bit word.

Column j
0 Step-1: (kernel 1)
- 1 * find pivot row for forward
g 0 reduction.
- 0 * IfA[i,j]==1, go to Step-3;
0 * otherwise, go to search the pivot
4 row and record its row index for
2 row exchange, go to Step-2.
1
Matrix A Vector D
Step-2. (kernel 2) Column j
« exchange row i and row k in both A 0
and D for forward reduction. - 1
* One thread processes one pair of g 0
elements' exchange. = 0
Step-3 (kernel 3) 3 g
extract the current column and copy i 5
them to host 1
 host calculates the number of rows a
that need to do reduction, and their .
row indexes for forward reduction. Matrix A Vector D
Columnj
1]0(0|0
» Ol1]1(1 Step-4. (kernel 4)
o,40]0|1]0 * Forward reduction from row
ojofofo ito all the rows that need to do
0fojojo reduction in both matrix A and D
0j0(0f1 * Send the row i to shared memory
ojojofo of each blocks that do forward
0]0f1}1 reduction.
ojof1]2
Matrix A Vector D Column
Step 5: (kernel 5) 1{olofo
* extract the current column(j) to host. olzlolo
* The host calculate the number of 0lol0l0
rows that need to be substituted and olzlolo
their row indexes. OT0T0T0
Step 6: (kernel 6) 4 11 0joij0
* backward substitution from rowito |2 Sl L
all the rows above it that need tobe | E
substituted _) 0 [0/
+ just update vector D, the final Matrix Vector D
updated vector D is the solution

Performance

Our test platform uses a 3.20 GHz Intel Core i7 quad-core CPU, a
GeForce GTX 570 graphic card with 2.5 GB video memory, CUDA 4.0
and the Fedora 13 operating system. For large block size and symbol
size, the speedup of PACKED WORD version decoding can approach 36,
and the speedup of WORD version decoding can approach 46.

a0 -
Speedup 36.07
35 -

Speedup (CPU/GPU) of PACKED WORD
30 Version with Large Block Size (K = 8192)
25
20

15

10

256 512 1024 2048 4096 8192

50 _Speedup
46.27

a5 - Speedup (CPU/GPU) of WORD Version

with Large Block Size (K = 8192)

35 32.85
30
25 22.68
20
15 -

10 -

Symbol
ze (Byte)

256 512 1024 2048 4096 8192

Reference

[1]T. Mladenov, S. Nooshabadi, and K. Kim, “Implementation and
Evaluation of Raptor Codes on Embedded Systems," IEEE Transactions
on Computers, Dec. 2011.

[2]T. Mladenov, S. Nooshabadi, and K. Kim, “Strategies for the Design of
Raptor Decoding in Broadcast/Multicast Delivery Systems," IEEE

Transactions on Consumer Electronics, vol. 56, no. 2, pp. 423-428, May
2010

