
Cory Slep and Jacob Eapen
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695
The Consortium for Advanced Simulation of Light Water Reactors

Abstract CUDA Implementation Continued

Results

Simultaneous Evolution of Multiple
Molecular Dynamics Simulations

The need to generate statistically
significant data from time intensive
molecular dynamics (MD) simulations
drives the search for algorithms that
can take advantage of inherent
parallelism in computer architectures.
CUDA is an ideal platform for
performing multiple MD simulations
for ensemble averaging. We
demonstrate a proof of concept
highlighting the potential of CUDA in
performing multiple MD simulations
with different initial conditions.

Within each independent MD simulation, a cell
(linked) list is implemented to account for short
ranged forces that act on the atoms in the system.

Work Supported By

CUDA Implementation

CUDA blocks are not used for
memory access optimizations in this
proof of concept, thus threads in
each block are assigned to each
simulation dynamically and do not
necessarily need to have similar
parameters.

Each simulation has an
independent location in
the memory address
which maintains the
simulation data (position,
velocity, and acceleration
of atoms) as necessary.

Results Continued

The MD simulations are performed in the NVT ensemble with a
thermostat to maintain constant temperature. The above figure shows
that the temperature is adequately controlled in all CUDA copies (only
results from ten independent simulations are shown).

The above figure shows that the CUDA
implementation is an order of magnitude
faster compared to the traditional (serial)
implementation of MD. It is assumed that
the traditional MD has at least a linear
scaling with system size (number of atoms).

Conclusion

Cory Slep is a III year undergraduate student in
Nuclear Engineering.
Images courtesy of Natalie Kerby.

We have performed a set of molecular
dynamics simulations that take advantage
of the inherent parallelism in CUDA
architecture. Compared to the traditional
implementation, CUDA is able to deliver the
output ten times faster. The advantage of
CUDA comes from the faster run times as
well as the vastly reduced need to have
multiple processors. Work is in progress for
improving the performance through memory
optimization.

Memory requirements for each independent simulation is not
necessarily identical.	

