
Acceleration of Complex Network Analysis
Athanasios Grivas, Terrence Mak

School of Electrical, Electronic & Computer Engineering, Newcastle University
a.grivas, terrence.mak{@ncl.ac.uk}

Abstract

The scientific role of complex networks nowadays is of
great importance. Their universal characteristics can be
adopted for use from all over the scientific fields. This is
the reason that scientists are pushing to the limits the
network analysis. But the conduct of such analysis in
CPU models it can be dramatically slow. They are not
able to process multiple computations on a small time
frame. There is need for acceleration of complex network
analysis where the time execution of the used algorithms
will be decreased in a large scale. Until now these
algorithms were executed to conventional CPUs in
sequential way. The breakthrough is the use of GPUs and
parallel computing in order to accelerate the whole
process. The CUDA (Compute Unified Device
Architecture) architecture is used as the main tool in
order to achieve this purpose. The transformation of
common algorithms as matrix multiplication to a parallel
model has shown large acceleration, which is a promising
point for the field of network analysis.

Protein/bioche
mical network

database

Network
clustering &
partitioning

Network
mapping

User interface for
specification &

parameterization

Visualization
Network
Database

Multicore Processor

Other
Targets

Therapeutic
Effects

Side
Effects

Complex Cellular
Network

Primary
Target

Complex Networks Modelling Platform

Parallel Computing Possible Analysis

Many areas of science
demand techniques to
explore large data sets
which, are in most cases
represented by large
graph abstractions.

Genomics
Astrophysics

Artificial Intelligence

Network Pharmacology: Drug discovery through
analysis of massive protein interaction networks .

Building a new platform that will be capable to partition
and map a massive network to multicore processors in
such way that parallel processing will guide to
acceleration of network analysis.

Shared Mem

CUDA Block

Multiprocessor

SP

Shared Mem

SP SP SP

SP SP SP SP

Runs On

The CUDA Device, with a number of Multiprocessors

Variables

Threads

Grid with multiple blocks resulting from a Kernel call

The device global memory

The CUDA Hardware Model

The CUDA Programming Model

Large Scale Network

Computed by

• All-Pairs Shortest Path through Matrix Multiplication (APSP)
Assume that the input graph 𝐺 = 𝑉, 𝐸 has 𝑛 vertices, so that
n = 𝑉 . Suppose that we present the graph by adjacency matrix

𝑊 = 𝑤𝑖𝑗 .

Let 𝑙𝑖𝑗
(𝑚)

 be the minimum weight of any path from vertex i to j that

contains at most 𝑚 edges.

When 𝑚 = 0, 𝑙𝑖𝑗
(0)

=
 0 𝑖𝑓 𝑖 = 𝑗,
∞ 𝑖𝑓 𝑖 ≠ 𝑗.

For 𝑚 ≥ 1, 𝒍𝒊𝒋
(𝒎)

= 𝑚𝑖𝑛 𝑙𝑖𝑗
𝑚−1

, 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑙𝑖𝑘
𝑚−1

+ 𝑤𝑘𝑗 (1)

 = 𝒎𝒊𝒏
𝟏≤𝒌≤𝒏

𝒍𝒊𝒌
𝒎−𝟏

+ 𝒘𝒌𝒋 .

The actual shortest-path weights are therefore given by:

𝛿 𝑖, 𝑗 = 𝑙𝑖𝑗
(𝑛−1)

= 𝑙𝑖𝑗
(𝑛)

= 𝑙𝑖𝑗
(𝑛+1)

= ⋯

We now compute a series of matrices 𝐿(1), 𝐿(2), ⋯⋯ , 𝐿 𝑛−1 , where for

𝑚 = 1, 2,⋯ , 𝑛 − 1, we have 𝐿(𝑚) = 𝑙𝑖𝑗
(𝑚)

. The final matrix 𝐿 𝑛−1

contains the actual shortest path weights.

Now we can see the relation to matrix multiplication. Suppose we
wish to compute the matrix product 𝑪 = 𝑨 × 𝑩 of two 𝑛 × 𝑛 matrices
A and B. Then, for 𝑖, 𝑗 = 1,2,⋯ , 𝑛, we compute: 𝑐𝑖𝑗 = 𝑎𝑖𝑘

𝑛
𝑘=1 × 𝑏𝑘𝑗. (2)

By doing the following substitutions at equation (1): 𝑙(𝑚−1) → 𝑎, 𝑤 → 𝑏,
𝑙(𝑚) → 𝑐, 𝑚𝑖𝑛 → +, + → × we observe that we obtain equation (2).

Consequently, all-shortest path can be calculated by multiplying
network’s adjacency matrix by its own self for n - 1 times :

𝐿(1) = 𝐿(0) × 𝑊 = 𝑊,
𝐿(2) = 𝐿(1) × 𝑊 = 𝑊2,
 ⋮
𝐿(𝑛−1) = 𝐿(𝑛−2) × 𝑊 = 𝑊𝑛−1

The last Matrix 𝑳(𝒏−𝟏) =
𝑾𝒏−𝟏 contains the shortest
path weights.

Global Memory

A(1)/2 x B(1)/2 A(1)/2 x B(1)/2

A(1) B(1)

C(1)

Shared Mem

Parallel Processing

A(1)

2

A(1)

2

B(1)

2

B(1)

2

Shared Mem

APSP
Computation

C(1) C(2)

C(4) C(3)

A(1)

B(1)

B(1)

A(1) C(1)

𝐵(1)

2

𝐴(1)

2

Matrix Subdivision

0
100

200
300

256x256

512x512

1024x1024

2048x2048

0.044053 sec

0.360101 sec

29.657789 sec

253.593414 sec

1.936332 sec

1.012807 sec

1.499354 sec

8.659609 sec

Needed Time in seconds

M
a
tr

ix
 S

iz
e

Performance: CPU Vs GPU

GPU

CPU

-5

0

5

10

15

20

25

30

256x256 512x512 1024x1024 2048x2048

R
a
ti

o

Matrix Size

GPU Speed up

ratio

Acceleration: 30 Times Faster !

20 Times Faster!

2048x2048

1024x1024

• Multithreading Computing

 Graphics Processing Unit (GPU) as

a multicore processor provides the
ability of multithreading.

 GPU is fully programmable

through NVidia's CUDA tool.

The initial sub-matrices are divided to
further sub-matrices. Therefore, matrix
multiplication is subdivided to more parts
and mapped to more cores. The data are
loaded from the global to shared memory.
They are processed and then their
combination provides the produced result
of its part of the new matrix. This parallel
processing guides to massive acceleration
of the whole computation.

Multicore Mapping

• Network Analysis

 Every network can be

represented through an adjacency
matrix.

 Finding the APSP to such
network can be done through
matrix multiplication.

• Mapping Network

 General view: Network is divided
to several parts and mapped on
different processors.

 Implementation: Each matrix sub–
computation is done through
multiple blocks of threads that are
running on multiple cores.

[1] Cormen, T., Leiserson, C., Rivest, R. and Stein, C. (2009) Introduction to Algorithms, Third
edition, USA: The MIT Press
[2] Brodtkorb, A., Dyken, C., Hagen, T., Hjelmevrik, J. and Storaasli, O. (2010) ‘State-of-the-art
in heterogeneous computing’, Scientific Programming 18, 1-33
[3] Berger, S. and Lyengar, R. (2009) ‘Network analyses in systems pharmacology’,
Bioinformatics, vol. 25, no. 19, July, pp. 2466-2472

CPU’s execution time is far slower. GPU achieved a 30 times
speed up. This performance is surely the most promising factor.
Real time analysis of large scale graphs can take advantage of
this massive parallelism and boost its own acceleration. The main
effort should be focused on the way that algorithms as APSP can
be mapped in the most optimal way to multicore architectures.
New techniques are needed to be discovered that improve the
time consuming transfers of memory in order to exploit in
maximum multiprocessors’ performance.

Discussion Results

References

