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simulations, we observe that, for large systems, the difference in precision
results in negligible difference in the coordinates of the MD simulations during
1,000,000 timesteps of simulations. For smaller systems, however, we observe
| | = R significant differences in the computations that can result in very different
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It is well known that computers can only represent numbers using a limited
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number of significant figures. Thus irrational numbers, such as m, cannot be

represented as its exact mathematical value in computer memory. The discrepancy
caused by this representation limitation is called "round-off error”. Often computers

have the capacity to represent numbers in two types of precisions, single (32-bit) o structural Overlap (g | Structural Overlap (0 result in a performance penalty but accurate trajectories. For larger systems,
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the consequences of rounding error. However, memory and computational cost We performed MD simulations using single vs. double precision computations, and

associated with double precision could be very expensive, so single precision e o A J we quantified the difference between the single vs. double precisions frames using

calculations are preferred when the precision of the calculation is not required to be E,'\\,/'rzg?itsﬁgn(l?’z residues) three different structural measures: difference in end-to-end distance (Ar,.),
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MD simulations are pronounced for smaller systems but negligible for systems
consisting for more than ~1000 beads. For smaller systems, there is not a clear
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