
• A 2D circle may be denoted by three parameters:

center location (a, b) and radius (r).

• A circle is voted for if model parameters of the

circle satisfy the points in input image (x, y).

• There are two fundamental approaches for HT to

detect circles.

Approach 1

• Use parametric equation of circle.

• Determine a range for r.

• Solve circle centers (a, b) for different r and (x, y).

• Vote for (a, b, r).

Approach 2 (Version 1)

• Use conventional equation of circle.

• Solve circle radius r for different (a, b) and (x, y).

• Vote for (a, b, r).

Approach 2 (Version 2)

• Solve circle center abscissa a for different (r, b)

and (x, y).

• Determine a range for r.

• Circle center ordinate b must satisfy:

• Vote for (a, b, r).

Parallelization of Hough Transform for Circles using CUDA
Faris Serdar TASEL1,2 Alptekin TEMIZEL1

1Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
2The department of Computer Engineering, Çankaya University, Ankara, Turkey

Hough Transform (HT)

Circle Detection using HT

Parallelization on CUDA

This research was supported by CUDA Research Center of Middle East Technical University

Results

Edge

detection

Hough

Transform

Find local

maxima

Input

image

 Binary

 image

 Hough

 space

Model

Parameters




sin
cos
rby
rax




222)()(rbyax 

22)(byrxa 

rybry 

x

y

Voted common

point

Binary

image

2D array 2D → 1D

parallel

conversion

1D pixel array

(in global memory)

Other

thread

blocks

...

Thread-block (2,1)

Thread

1

...

Shared

Memory

Thread

2
...

Thread-block (1,1)

Thread

1

...

Shared

Memory

Thread

2
...

Complete Hough space

(in global memory)

• The parameter b cannot be adjusted with respect

to the inequality. All rows are searched instead.

(x0, y0)

(x, y)

(x1, y1)

B1

B2

B0

T0

T1

T0

T0

T1
T1

Thread-blocks {B0, B1, B2 ...}

sharing circle centers (a, b)

and threads {T0, T1 ...}

sharing the points {(x0, y0),

(x1, y1) ...} in the image.

Version 2 (Based on Approach 2 Version 1)

• HT is the same as Version 1.

• 2D binary image to 1D pixel array conversion is

carried out before HT.

• What if the image point (x, y) scanned by a thread

is empty pixel?

• Most of the threads will be idle if we consider binary

image as a sparse matrix.

• Hough Transform (HT) is a well-known technique

used for detection of parametric shapes in image

processing.

• However, various optimizations are necessary in

its implementation due to large memory and

computational requirements.

• Hough transform may simply be used with an edge

detector to obtain local maxima of Hough space.

• The peak values which are greater than a

threshold in Hough space give the model

parameters of detected shapes. register_index = -1

 register_pixel_value = global_image[x,y]

 if (register_pixel_value == 1) {

 do {

 register_index++

 shared_index = register_index

 shared_array[register_index] = (x,y)

 } while (shared_array[register_index] != (x,y))

 }

 index = shared_index

Thread-block (2, 2)

Thread-block (1, 1) Thread-block (2, 1)

Thread-block (1, 2)

2D Binary image to 1D pixel array conversion

• Conversion process is based on the paper by

Braak et al. ACIVS’2011.

• The image is divided into tiles for the thread-

blocks to process. Threads in each thread-block

search the pixels in collaboration and construct a

1D pixel array in the shared memory which

comprises 4 byte integers where the coordinate

data are packed.

• Then, the first thread in each thread-block

calculates an offset position in the global list.

Finally, the threads copy the 1D pixel array from

the shared memory to the global memory.

• Conversion is carried out by threads in race

condition. Each thread writes an item into the

array and check whether the item is correct. If

not, then it tries to write into next location.

• The parallelization of HT may be accomplished by

dividing and sharing the search space among thread-

blocks and threads.

• In approach 1, accumulation is done on 2D array.

Not suitable for shared memory!

• In approach 2, accumulation is done on 1D array.

Suitable for shared memory. Three versions are

proposed.

Version 1 (Based on Approach 2 Version 1)

• (a, b) pairs are shared by thread-blocks. (x, y) pairs

are shared by threads.

Version 3 (Based on Approach 2 Version 2)

• Conversion phase is applied similar to Version 2.

• (r, b) pairs are shared by thread-blocks. (x, y)

pairs are shared by threads.

• Hough space initialization and copying operations

are also done via unrolled loops to the contrary of

the second version.

Used hardware: Intel i3 3.33 Ghz CPU, NVIDIA Tesla C2070 GPU

Image

Size

of edge

pixels

Radius

range

128x128 1466 [10, 25] px

256x256 3217 [20, 50] px

512x512 6059 [40, 100] px

• Each algorithm was executed 30 times.

• The number of threads is 128 (found to be the best

performing value). The grid dimension is equal to

the image size for GPU Version 1&2 and (Image

height x Radius range) for GPU Version 3.

• The algorithms were grouped and compared with

respect to the output types.

Execution Times (ms)

Image Details

308.0

112.3

16.0

110.3

373.5

154.3

24.1

275.5

518.9

348.8

21.0

360.5

0.0

100.0

200.0

300.0

400.0

500.0

600.0

GPU Version 3 GPU Version 3 GPU Version 1 GPU Version 2

versus versus versus versus

CPU Approach 1 CPU Approach 2 Version
2

CPU Approach 2 Version
1

CPU Approach 2 Version
1

Speed-up values

128x128

256x256

512x512

Speed-up values (IO included)

40.2

14.7
9.7

20.1

63.5

26.2

17.5

51.8

81.6

54.9

16.6

65.7

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

GPU Version 3 GPU Version 3 GPU Version 1 GPU Version 2

versus versus versus versus

CPU Approach 1 CPU Approach 2

Version 2

CPU Approach 2

Version 1

CPU Approach 2

Version 1

128x128

256x256

512x512

Algorithm
Image Size

128x128 256x256 512x512

CPU Approach 1 92.4 933.8 9133.2

CPU Approach 2 Version 1 430.0 8815.3 87921.0

CPU Approach 2 Version 2 33.7 385.7 6139.2

GPU Version 1 26.9 365.7 4189.3

GPU Version 1 IO included 44.3 504.3 5282.1

GPU Version 2 3.9 32.0 243.9

GPU Version 2 IO included 21.4 170.3 1337.9

GPU Version 3 0.3 2.5 17.6

GPU Version 3 IO included 2.3 14.7 111.9

• Speedup increases with image size.

• Up to ~360 times speedup for GPU Version 2 and

up to ~350 times speedup for GPU Version 3.

• Speedups degrade significantly when IO transfer

time is taken into consideration: up to ~66 times

speedup for GPU Version 2 and up to ~55 times

speedup for GPU Version 3.

References
[1] Gonzalez R.C., Woods R.E., 2007. Digital Image Processing, 3rd Edition, Prentice Hall.

[2] Hough P.V.C. Method and Means for Recognizing Complex Patterns. 1962.

[3] Ujaldon M., Ruiz A., Guil N. On the Computation of the Circle Hough Transform by a

GPU Rasterizer. Pattern Recognition Letters, 29(3), 309-318, 2008.

[4] Braak G.-J., Nugteren C., Mesman B., Corporaal H. Fast Hough Transform on GPUs:

Exploration of Algorithm Trade-Offs. Advances Concepts for Intelligent Vision Systems,

Lecture Notes in Computer Science, 6915(2011), pp. 611-622, 2011.

