SAN FRANCISCO Finite Difference-Based Sound Synthesis Using GPUs

Marc Sosnick William Hsu

STAT E UN IV E R S IT Y msoshick@sfsu.edu whsu@sfsu.edu

San Francisco State University, Department of Computer Science
INTRODUCTION SYSTEM ARCHITECTURE REQUIREMENTS FOR REALTIME AUDIO

We have been exploring the use of the general-purpose high-performance
computing capabilities of GPUs to perform sound synthesis using compute-
iIntensive physics-based models in realtime. Until now, realtime synthesis using
these models has not been practical using only CPUs. While others have used
these physics-based models to generate audio, none have executed in realtime.
Realtime sound synthesis using these physics-based models will allow the
creation of new audio synthesizer instruments. Our proof-of-concept project
discussed here shows that it is possible to use these compute-intensive models user input
to generate sound in realtime using GPUs.

To be considered useful as a realtime audio instrument, jitter and latency must
be within acceptable limits. This is known as responsiveness.

Callback Thread Finite Difference Thread
Port Audio Finite Difference
Callback Engine

audio audio
data : data
Ring Butter Figure 6. Maximum allowable jitter Figure 7. Maximum allowable latency

-------- There can be no jitter (Figure 6), which is usually caused by buffer underruns,
and latency (Figure 7) should be near or below 35ms.
control .
Open Sound

- EXPERIMENTAL RESULTS

\l/

‘MXJ\/\/ "\\/\/\ none e || < ~35 ms

time — time

control

GENERATING AUDIO FROM A SYNTHESIZED MEMBRANE

To simulate a membrane, we use a finite-difference scheme, using a

PPPPP

Open Sound

truncated second-order Taylor series expansion of the wave equation —x o Control _ Table 2 and Table 3 summarize our results. Buffer sizes of 8, 512, and 4096
with dissipation in two dimensions (Equation 1). ‘ o Foreground Thread samples correspond to audio output durations of 0.181 ms, 11.6 ms, and 92.8
e s Controller ms at 44,100 Hz. For the realtime audio tests, all kernel output buffer and
i _ [1+W]_1< p[um’j Ul bl tul —4u,-,j] | m grid configurations produced no audio output buffer underruns.
iy 2 n ! n— .
+2u; ;- [1 * ng]ui,fl Figure 3. Host thread configuration. —
J : Finite Memory
— Processing is divided between the host (CPU) and the GPU. For efficiency, Bsu.ffer EX.‘I:.'.tat'O" D'f.iifre"ce T?."Sfer ¥?ta'
Buffer ___Audio h\ The host runs three threads (Figure 3), each with distinct responsibilities - N N N N
o T ow B gure), . ponsbilities. (samples) (ms) (ms) (ms) (ms)
ol Y P The Callback Thread collects and outputs audio samples, the Finite Dif-
% 8 0.04 0.56 0.02 0.62
1 ference Thread performs the finite difference simulation. The Foreground
. 512 0.03 6.78 0.01 6.82
Simulated Sample Thread handles controller input and 2096 503 431 503 24 37
Membrane oint | program management ’DEVICE : . .
V/\j Excitation Kernel Table 2. Results of varying buffer size with a constant grid size

The Finite Difference Engine of 21x21 points.

(Figure 4) is responsible for
time=1¢ time = 1.+Af
"’ " coordinating membrane excitation,
I'"AW r'lf\“~\/‘ which roughly corresponds to
S “ plucking or striking the membrane,
as well as continually simulating the

Finite Memory
Grid Excitation Difference Transfer

Size Time Time Time
(points) (ms) (ms) (ms)

v vibrating membrane. 15x15 0.03 30.26 0.03 30.32
} | | 18x18 0.03 31.81 0.03 31.87
... Y Ty 03 24 73 503 2437

Figure 4. FD engine configuration.
Table 3. Results of varying grid size with a constant buffer size
of 4096 samples.

time =£,,+2At time ={,,+3A¢

EXPERIMENTAL SETUP

We implemented our Finite Difference Synthesizier (FDS) software in C and

Figure 1. Generating audio from a simulated membrane. _ | _ o _
Satisfactory percussive sounds were produced in qualitative testing. An

experimental Open Sound Control (OSC) controller interface (Figure 5)

A point is selected on the membrane (Figure 1). The vertical displacement

of this po_int IS captured at regular intervals over time. The change ir_1 g;:el:;lnv?/it(r:\l;DC?e.ng;eé$g3FO?\AS§IgS :\Siﬁicogsprfo\,\gtg 82.66 GHz Intel running on an Apple iPad2 was used as the user input controller. It was
vertical displacement of the membrane then corresponds to the vertical ’ J R found that the FDS’s output was especially sensitive to changes in the FD
displacement over time of an audio signal. Theretore the motion of the TR Table 1 shows the grid and kernel parameters n and p. Sample recordings of some of these tests are
me_n_1brane over time determines the audio OL.Jtput.. For computational (points) (samples) buffer size configurations that available at http://userwww.sfsu.edu/~whsu/FDGPU.
efficiency, audio output samples for consecutive timesteps are buffered Setup | were tested. Setup | held grid
before playback. size constant while varying the
grid(0,0) grid(0,gridColSize-1) For eaCh t|me Step, Setup Il kernel bUﬁer SIZ€. . SetuD ” held CONCLUSIONS
Nmi o0 F o1 i2ia/ one grid must be up- the kernel buffer size constant
oRowSive — | i o ‘ | dated. To be proces- T 4. @) and) By sle Gamlh i leis et while varying the grid size. We It Is possible to generate realtime audio using GPUs and finite-difference
» £8 T~ .. ran and timed the following simulations.
o = N sed efficiently by the sequence five hunderd times:
% | g ((;zg) i:js;nbeg]cllji:/ailgeed 1 e eveTEiie) i Larger grids better leverage GPU computing power.
< .
e - S into tiles, each of 2. check ring buffer space Choice of buffer and grid sizes is important to responsiveness
B 2 : : | which can then be 3. perform the FD simulation
------ . AN i ocessed indenen. 4. copy the FD simulation Memory bandwidth is not a major consideration, especially with more
» Qéwﬁze_;io)—gr|dCoIS|zegrid(gridé0WSize_1Igridcomzeq) gently N GFF)>U output to the ring buffer. advanced graphics cards.
I halo [] buffer(=0)] boundary B IMmi
(Figure 2). _he timings were then ave.raged. By using GPUs it is possible to create a responsive, realtime audio
he results are presented in

synthesizer instrument using compute-intensive physics-based models.

Figure 2. Membrane division for processing. Figure 5. E:)(ﬁter':;w;nitr\atle?fgge. ‘able 2 and Table 3.

