
SYSTEM ARCHITECTURE

The Finite Difference Engine
(Figure 4) is responsible for
coordinating membrane excitation,
which roughly corresponds to
plucking or striking the membrane,
as well as continually simulating the
vibrating membrane.

Figure 3. Host thread configuration.

Figure 4. FD engine configuration.

Execute
FD Simulation

Copy to
Ring Buffer

Buffer
Available?

Hit
Received?

Calculate
Hit Point

Copy to
FD Membrane

Excitation Kernel

FD Kernel

Yes

Yes

No

No

HOST DEVICE

Processing is divided between the host (CPU) and the GPU. For efficiency,
The host runs three threads (Figure 3), each with distinct responsibilities.
The Callback Thread collects and outputs audio samples, the Finite Dif-
ference Thread performs the finite difference simulation. The Foreground
Thread handles controller input and
program management.

audio

Open Sound
Control

Open Sound
Control

Port Audio
Callback

Finite Difference
Engine

Ring Buffer

Finite Di�erence ThreadCallback Thread

Foreground Thread

audio
data

audio
data

control control

Eta

Pulse Damp

Rho

Amp

Alpha

Controller

user input

CONCLUSIONS

It is possible to generate realtime audio using GPUs and finite-difference
simulations.

Larger grids better leverage GPU computing power.

Choice of buffer and grid sizes is important to responsiveness

Memory bandwidth is not a major consideration, especially with more
advanced graphics cards.

By using GPUs it is possible to create a responsive, realtime audio
synthesizer instrument using compute-intensive physics-based models.

●

●
●
●

●

INTRODUCTION

We have been exploring the use of the general-purpose high-performance
computing capabilities of GPUs to perform sound synthesis using compute-
intensive physics-based models in realtime. Until now, realtime synthesis using
these models has not been practical using only CPUs. While others have used
these physics-based models to generate audio, none have executed in realtime.
Realtime sound synthesis using these physics-based models will allow the
creation of new audio synthesizer instruments. Our proof-of-concept project
discussed here shows that it is possible to use these compute-intensive models
to generate sound in realtime using GPUs.

REQUIREMENTS FOR REALTIME AUDIO

To be considered useful as a realtime audio instrument, jitter and latency must
be within acceptable limits. This is known as responsiveness.

Figure 6. Maximum allowable jitter

time

none

Figure 7. Maximum allowable latency

LATENCY

time

< ~35 ms

There can be no jitter (Figure 6), which is usually caused by buffer underruns,
and latency (Figure 7) should be near or below 35ms.

San Francisco State University, Department of Computer Science

Finite Di�erence-Based Sound Synthesis Using GPUs
William Hsu

whsu@sfsu.edu
Marc Sosnick
msosnick@sfsu.edu

GENERATING AUDIO FROM A SYNTHESIZED MEMBRANE

ui ,j
n+1 = 1+ t

2[] 1 ui+1,j
n + ui 1,j

n + ui ,j+1
n + ui ,j 1

n 4ui ,j
n[]

+2ui ,j
n 1+ t

2[]ui ,j
n 1

 (1)

To simulate a membrane, we use a finite-difference scheme, using a
truncated second-order Taylor series expansion of the wave equation
with dissipation in two dimensions (Equation 1).

Audio
Buffer

Sample
Point

Audio
Out

Simulated
Membrane

time = tn

0.0

0.3

-0.3
80

-0.3

0.0

0.3

time = tn+∆t

time =tn+2∆t time =tn+3∆t

Figure 1. Generating audio from a simulated membrane.

A point is selected on the membrane (Figure 1). The vertical displacement
of this point is captured at regular intervals over time. The change in
vertical displacement of the membrane then corresponds to the vertical
displacement over time of an audio signal. Therefore the motion of the
membrane over time determines the audio output. For computational
efficiency, audio output samples for consecutive timesteps are buffered
before playback.

Figure 2. Membrane division for processing.

0 1 2

0

1

2

gridColSize

gr
id

Ro
w

Si
ze

grid(0,0) grid(0,gridColSize-1)

grid(gridRowSize-1,0) grid(gridRowSize-1,gridColSize-1)

bu�er (=0) boundaryhalo

tileRowSize

til
eC

ol
Si

ze

For each time step,
one grid must be up-
dated. To be proces-
sed efficiently by the
GPU, the membrane
(grid) must be divided
into tiles, each of
which can then be
processed indepen-
dently on the GPU
(Figure 2).

We implemented our Finite Difference Synthesizier (FDS) software in C and
C++ using CUDA. We tested FDS on a MacBook Pro with a 2.66 GHz Intel
Core i7, with a GeForce GT 330M GPU running OS 10.6.6.

EXPERIMENTAL SETUP

 Grid Size
(points)

Kernel Buffer Size
(samples)

Setup I

21x21 8
21x21 512
21x21 4096

Setup II
15x15 4096
18x18 4096
21x21 4096

Table 1. Grid and buffer size configurations tested.

Figure 5. Experimental OSC
 controller interface.

Table 1 shows the grid and kernel
buffer size configurations that
were tested. Setup I held grid
size constant while varying the
kernel buffer size. Setup II held
the kernel buffer size constant
while varying the grid size. We
ran and timed the following
sequence five hunderd times:

1. run the excitation kernel
2. check ring buffer space
3. perform the FD simulation
4. copy the FD simulation
 output to the ring buffer.

The timings were then averaged.
The results are presented in
Table 2 and Table 3.

EXPERIMENTAL RESULTS

Buffer
Size

(samples)

Excitation
Time
(ms)

Finite
Difference

Time
(ms)

Memory
Transfer

Time
(ms)

Total
Time
(ms)

8 0.04 0.56 0.02 0.62
512 0.03 6.78 0.01 6.82

4096 0.03 34.31 0.03 34.37

Table 2. Results of varying buffer size with a constant grid size
 of 21x21 points.

Grid
 Size

(points)

Excitation
Time
(ms)

Finite
Difference

Time
(ms)

Memory
Transfer

Time
(ms)

Total
Time
(ms)

15x15 0.03 30.26 0.03 30.32
18x18 0.03 31.81 0.03 31.87
21x21 0.03 34.73 0.03 34.37

Table 3. Results of varying grid size with a constant buffer size
 of 4096 samples.

Table 2 and Table 3 summarize our results. Buffer sizes of 8, 512, and 4096
samples correspond to audio output durations of 0.181 ms, 11.6 ms, and 92.8
ms at 44,100 Hz. For the realtime audio tests, all kernel output buffer and
grid configurations produced no audio output buffer underruns.

Satisfactory percussive sounds were produced in qualitative testing. An
experimental Open Sound Control (OSC) controller interface (Figure 5)
running on an Apple iPad2 was used as the user input controller. It was
found that the FDS’s output was especially sensitive to changes in the FD
parameters η and ρ. Sample recordings of some of these tests are
available at http://userwww.sfsu.edu/~whsu/FDGPU.

