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INTRODUCTION SYSTEM ARCHITECTURE REQUIREMENTS FOR REALTIME AUDIO

We have been exploring the use of the general-purpose high-performance
computing capabilities of GPUs to perform sound synthesis using compute-
iIntensive physics-based models in realtime. Until now, realtime synthesis using
these models has not been practical using only CPUs. While others have used
these physics-based models to generate audio, none have executed in realtime.
Realtime sound synthesis using these physics-based models will allow the
creation of new audio synthesizer instruments. Our proof-of-concept project
discussed here shows that it is possible to use these compute-intensive models user input
to generate sound in realtime using GPUs.

To be considered useful as a realtime audio instrument, jitter and latency must
be within acceptable limits. This is known as responsiveness.
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-------- There can be no jitter (Figure 6), which is usually caused by buffer underruns,
and latency (Figure 7) should be near or below 35ms.
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GENERATING AUDIO FROM A SYNTHESIZED MEMBRANE

To simulate a membrane, we use a finite-difference scheme, using a
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truncated second-order Taylor series expansion of the wave equation —x o Control _ Table 2 and Table 3 summarize our results. Buffer sizes of 8, 512, and 4096
with dissipation in two dimensions (Equation 1). ‘ o Foreground Thread samples correspond to audio output durations of 0.181 ms, 11.6 ms, and 92.8
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The Finite Difference Engine of 21x21 points.

(Figure 4) is responsible for
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"’ " coordinating membrane excitation,
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S “ plucking or striking the membrane,
as well as continually simulating the
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Figure 4. FD engine configuration.
Table 3. Results of varying grid size with a constant buffer size
of 4096 samples.
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EXPERIMENTAL SETUP

We implemented our Finite Difference Synthesizier (FDS) software in C and

Figure 1. Generating audio from a simulated membrane. _ | _ o _
Satisfactory percussive sounds were produced in qualitative testing. An

experimental Open Sound Control (OSC) controller interface (Figure 5)

A point is selected on the membrane (Figure 1). The vertical displacement
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synthesizer instrument using compute-intensive physics-based models.

Figure 2. Membrane division for processing. Figure 5. E:)(ﬁter':;w;nitr\atle?fgge. ‘able 2 and Table 3.




