
SYSTEM ARCHITECTURE

The Finite Difference Engine 
(Figure 4) is responsible for 
coordinating membrane excitation, 
which roughly corresponds to 
plucking or striking the membrane, 
as well as continually simulating the 
vibrating  membrane. 

Figure 3.  Host thread configuration.

Figure 4.  FD engine configuration.
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HOST DEVICE

Processing is divided between the host (CPU) and the GPU.  For efficiency,
The host runs three threads (Figure 3), each with distinct responsibilities.  
The Callback Thread collects and outputs audio samples, the Finite Dif-
ference Thread performs the finite difference simulation.  The Foreground 
Thread handles controller input and 
program management.
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CONCLUSIONS

It is possible to generate realtime audio using GPUs and finite-difference 
simulations.

Larger grids better leverage GPU computing power.

Choice of buffer and grid sizes is important to responsiveness

Memory bandwidth is not a major consideration, especially with more 
advanced graphics cards.   

By using GPUs it is possible to create a responsive, realtime audio 
synthesizer instrument using compute-intensive physics-based models.
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INTRODUCTION

We have been exploring the use of the general-purpose high-performance 
computing capabilities of GPUs to perform sound synthesis using compute-
intensive physics-based models in realtime.  Until now, realtime synthesis using 
these models has not been practical using only CPUs.  While others have used 
these physics-based models to generate audio, none have executed in realtime.
Realtime sound synthesis using these physics-based models will allow the 
creation of new audio synthesizer instruments.  Our proof-of-concept project 
discussed here shows that it is possible to use these compute-intensive models 
to generate sound in realtime using GPUs.

REQUIREMENTS FOR REALTIME AUDIO

To be considered useful as a realtime audio instrument, jitter and latency must 
be within acceptable limits.  This is known as responsiveness.

Figure 6.  Maximum allowable jitter
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Figure 7.  Maximum allowable latency

LATENCY

time

< ~35 ms

There can be no jitter (Figure 6), which is usually caused by buffer underruns,  
and latency (Figure 7) should be near or below 35ms.
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GENERATING AUDIO FROM A SYNTHESIZED MEMBRANE
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To simulate a membrane, we use a finite-difference scheme, using a 
truncated second-order Taylor series expansion of the wave equation
with dissipation in two dimensions (Equation 1).
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Figure 1.  Generating audio from a simulated membrane.

A point is selected on the membrane (Figure 1).  The vertical displacement 
of this point is captured at regular intervals over time.  The change in 
vertical displacement of the membrane then corresponds to the vertical
displacement over time of an audio signal.  Therefore the motion of the
membrane over time determines the audio output.  For computational 
efficiency, audio output samples for consecutive timesteps are buffered
before playback.

Figure 2.  Membrane division for processing.

0 1 2

0

1

2

gridColSize

gr
id

Ro
w

Si
ze

grid(0,0) grid(0,gridColSize-1)

grid(gridRowSize-1,0) grid(gridRowSize-1,gridColSize-1)

bu�er (=0) boundaryhalo

tileRowSize

til
eC

ol
Si

ze

For each time step, 
one grid must be up-
dated.  To be proces-
sed efficiently by the 
GPU, the membrane
(grid) must be divided
into tiles, each of 
which can then be
processed indepen-
dently on the GPU 
(Figure 2).

We implemented our Finite Difference Synthesizier (FDS) software in C and 
C++ using CUDA.  We tested FDS on a MacBook Pro with a 2.66 GHz Intel 
Core i7, with a GeForce GT 330M GPU running OS 10.6.6.  

EXPERIMENTAL SETUP

 Grid Size 
(points) 

Kernel Buffer Size 
(samples) 

Setup I
 

 
21x21 8 
21x21 512 
21x21 4096 

Setup II 
15x15 4096 
18x18 4096 
21x21 4096 

Table 1.  Grid and buffer size configurations tested.

Figure 5.  Experimental OSC 
                 controller interface.

Table 1 shows the grid and kernel 
buffer size configurations that  
were tested.  Setup I held grid 
size constant while varying the 
kernel buffer size.  Setup II held 
the kernel buffer size constant 
while varying the grid size.  We 
ran and timed the following 
sequence five hunderd times:  

1. run the excitation kernel 
2. check ring buffer space 
3. perform the FD simulation
4. copy the FD simulation 
    output to the ring buffer.  

The timings were then averaged.
The results are presented in 
Table 2 and Table 3.

EXPERIMENTAL RESULTS

Buffer 
Size 

(samples) 

Excitation 
Time 
(ms) 

Finite 
Difference 

Time 
(ms) 

Memory 
Transfer 

Time 
(ms) 

Total 
Time 
(ms) 

8 0.04 0.56 0.02 0.62 
512 0.03 6.78 0.01 6.82 

4096 0.03 34.31 0.03 34.37 

Table 2. Results of varying buffer size with a constant grid size 
              of 21x21 points.

Grid 
 Size 

(points) 

Excitation 
Time 
(ms) 

Finite 
Difference 

Time 
(ms) 

Memory 
Transfer 

Time 
(ms) 

Total 
Time 
(ms) 

15x15 0.03 30.26 0.03 30.32 
18x18 0.03 31.81 0.03 31.87 
21x21 0.03 34.73 0.03 34.37 

Table 3. Results of varying grid size with a constant buffer size 
              of 4096 samples.

Table 2 and Table 3 summarize our results.  Buffer sizes of 8, 512, and 4096
samples correspond to audio output durations of 0.181 ms, 11.6 ms, and 92.8 
ms at 44,100 Hz. For the realtime audio tests, all kernel output buffer and 
grid configurations produced no audio output buffer underruns. 

Satisfactory percussive sounds were produced in qualitative testing.  An 
experimental Open Sound Control (OSC) controller interface (Figure 5) 
running on an Apple iPad2 was used as the user input controller. It was 
found that the FDS’s output was especially sensitive to changes in the FD 
parameters η and ρ. Sample recordings of some of these tests are 
available at http://userwww.sfsu.edu/~whsu/FDGPU.


