

JOANNEUM RESEARCH ForschungsgesellschaftmbH

Institute for Information and Communication Technologies

> Steyrergasse 17 8010 Graz, Austria

Tel. +43 316 876-5000 Fax +43 316 876-50 10

hannes.fassold@joanneum.at www.joanneum.at/digital

www.prestoprime.or

GPU-accelerated detection of severe video distortions

Introduction

- Millions of hours of analog video material waiting for digitization in archives of broadcaster
- Automatic and high speed content-based quality assessment of the material would be very valuable
- Here we focus on severe analog video distortions ('video breakup')
 - Often affect whole line at once
 - Line jittering, color shifting, dropouts

Algorithm

- Based on (optionally motion-compensated) difference image of consecutive frames
- Two different measures (row change, edge ratio) on the difference image are used for frame-wise decision
- Some temporal post-processing is done

Row change measure

- Algorithm
 - Reduce difference image to a vector by calculating a statistical measure (e.g. mean, median) for each row in difference image
 - Row change measure is distance between respective vectors from consecutive frames
- Fermi GPU implementation key issues
 - Difficult to implement the row histogram efficiently with atomic functions because row histogram is highly concentrated at 'zero'
 - Solved by employing **multiple** 8-bit histograms in shared memory during row histogram them laterly
 - GPUs are crucially needed

generation (with atomic functions) and merging

48 KB shared memory (per SM) provided by Fermi

<u>Video</u>

Image n-1

Image "

.

Row change

measure

Figure 2: Appearances of severe analog video distorations

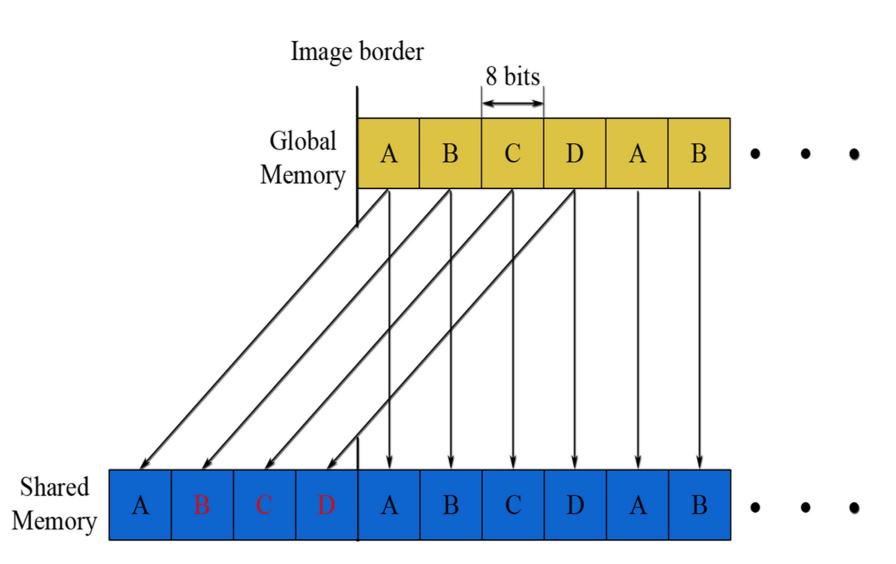
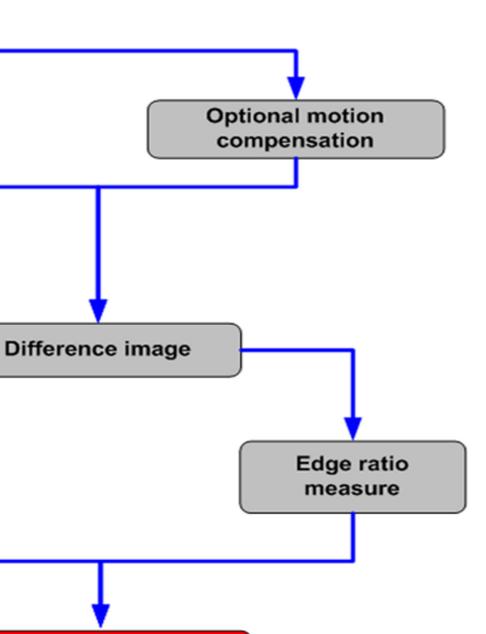



Figure 3: Loading 8-bit elements for image apron from global to shared memory

Hannes Fassold, Jakub Rosner, Martin Winter, Peter Schallauer

Edge ratio measure Algorithm Based on the ratio between horizontal and vertical edges in the difference image Fermi GPU implementation - key issues Each threads handles four consecutive pixels of data type **uint8** Efficient loading of 1-pixel 'apron' for convolution kernel (see figure 3) for image border handling Evaluation Algorithm achieves recall of 82 % with 0.44 FP per minute video GPU implementation processes ten Full HD (1920 x 1080) video streams in real-time on a GTX 480 Conclusion Algorithm achieves sufficient detection quality for multiple Full HD streams in real-time Transfer time GPU-CPU dominates runtime of GPU implementation (see figure 4) Integrated in content-based quality analysis prototype application (http://www.av-inspector.com) GPU - SD 0,5 GPU Total - SD CPU - SD

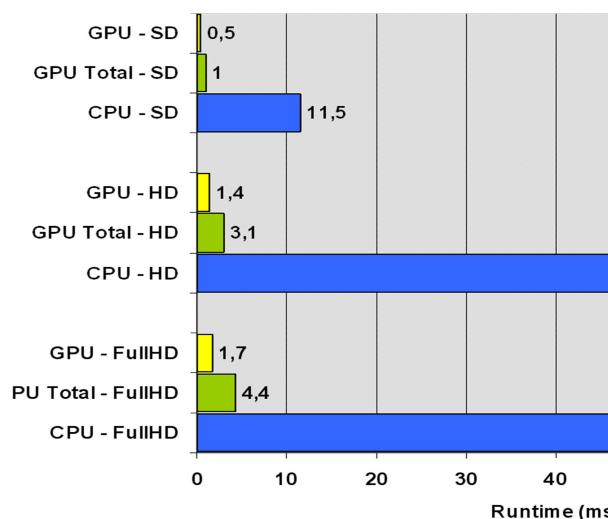


Figure 4: Runtime comparison of GPU and multi-threaded CPU implementation (GPU Total = GPU implementation inclusive transfer time CPU-GPU)

a TRADITION of INNOVATION