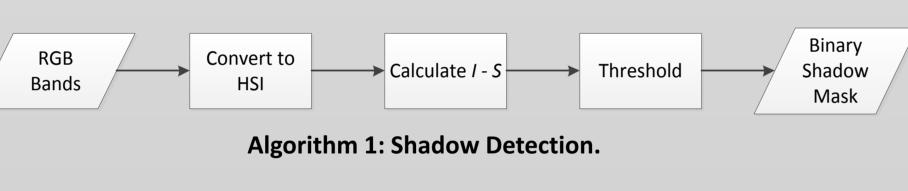


Abstract

Satellite images have become widely available; as a result there are increasing number of commercial applications utilizing these images. Satellites provide data in different wavelengths and they have higher resolution and larger data size compared to typical images. Running complex algorithms on satellite images for large data volumes is highly time consuming using CPUs. Processing of satellite imagery data can be speeded-up using General **Purpose Computation on Graphics Processing Units** (GPU) instead of Central Processing Units (CPU). In this paper, performance of shadow detection and vegetation detection algorithms are investigated and their performance on GPU and CPU are compared. Results show that up to 10.2 times speed up could be achieved using GPU.

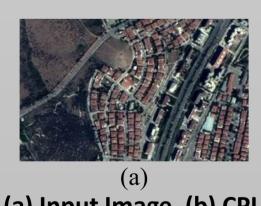
General View of The System

dfd Shadow loop Kernel For Each Pixel Binary Shadow onvert to HS Threshold Mask dfd NDVI loop Kernel For Each Pixel Binary Vegetatio Mask Threshold **RGBNIR Band** Iculate ND dfd CS_HE_Shadow_Otsu «Kernel» Calculate «Kernel» Stretch Image ind Min-Max «Kernel» Calculate Histogram alculate CI «Kernel» Threshold «Kernel» Calculate NDVI Binary Vegetation Calculate


In this work, common satellite image processing algorithms namely shadow detection and vegetation detection as well as preprocessing steps (contrast normalization and histogram equalization) are implemented.

Shadow Detection

Manmade Objects Casts Shadows


Aerial images contain shadows which causes loss of radiometric information in segmentation, 3D scene reconstruction and registration. Existence of shadows degrades performance of segmentation which is required to separate objects from background for target detection algorithms.

Vegetation Detection

RGB-NIR Bands

NDVI Index is calculated.

(a) Input Image, (b) CPU Implementation Vegetation Mask, (c) GPU Implementation Vegetation Mask

Effect of Data Size to Performance

Effect Of Image Size

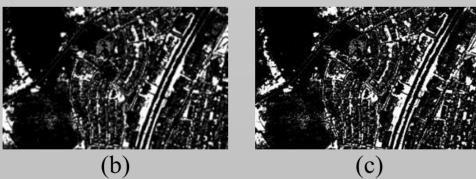
	Image Size	Time (ms)	Mpixels/s		Algorithm	Time (ms)	Μ
Shadow	322x265	0.38	888		Shadow	22.51	
	1535x968	1.73	3440	GPU 8 Bit Data	NDVI	7.56	
	4657x4241 22.51 3510	Shadow + NDVI	26.94				
NDVI	322x265	0.38	907		Shadow	59.88	
	1535x968	0.73	8094	GPU 8 Bit Data w/ Memory Transfers	NDVI	47.42	
	4657x4241	7.56	10450		Shadow + NDVI	75.74	
Shadow and NDVI	322x265	0.36	960		Shadow	652.62	
	1535x968	1.81	3280	CPU 16 Bit Data	NDVI	390.93	
	4657x4241	26.94	2933		Shadow + NDVI	1112.94	

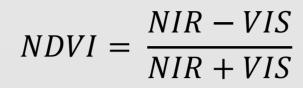
REMOTE SENSING ON GPU: A CASE STUDY

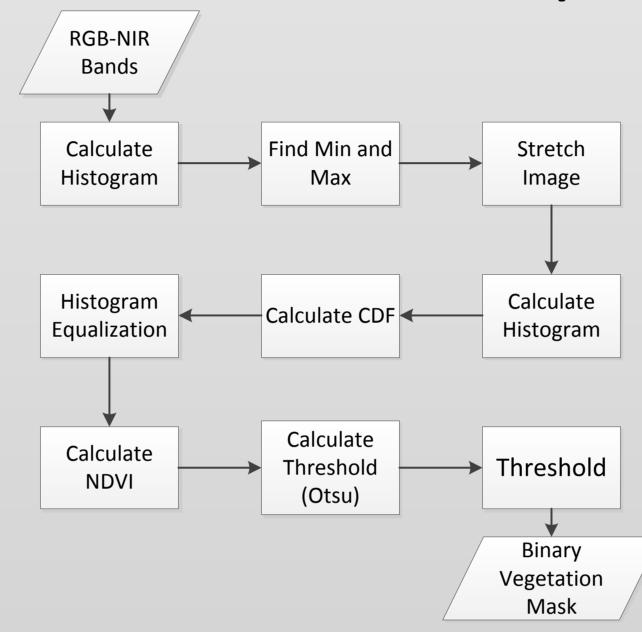
Mustafa Teke^{1,2} Alptekin TEMİZEL²

mteke@havelsan.com.tr, atemizel@ii.metu.edu.tr

¹HAVELSAN A.S., Eskisehir Yolu 7.km 06520, Ankara, Turkey ²Graduate School of Informatics, Middle East Technical University, Ankara, Turkey


Implementation Details


• Image is converted into HSI Color Space. • I and S values are compared for shadow detection. I-S difference is thresholded for detecting shadows.


NDVI difference is thresholded for detecting Vegetation.

While living plants absorb solar radiation in the process of photosynthesis, leaf cells scatter solar radiation in the near infrared band since this band region is not as useful as other bands like green. Vegetation tends to have higher values in near infrared band, this can be summarized by Normalized Vegetation Index (NDVI) [1]

Vegetation Detection with Preprocessing

Algorithm 3: Vegetation Detection Using Pre-processing and Automatic Thresholding.

8-Bit Data Formats

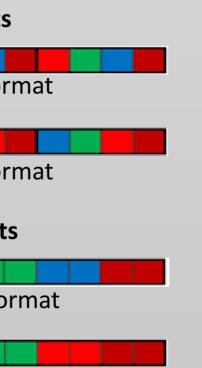
8-Bit RGB-NIR Data Format

8-Bit BGR-NIR Data Format

16-Bit Data Formats

16-Bit RGB-NIR Data Format

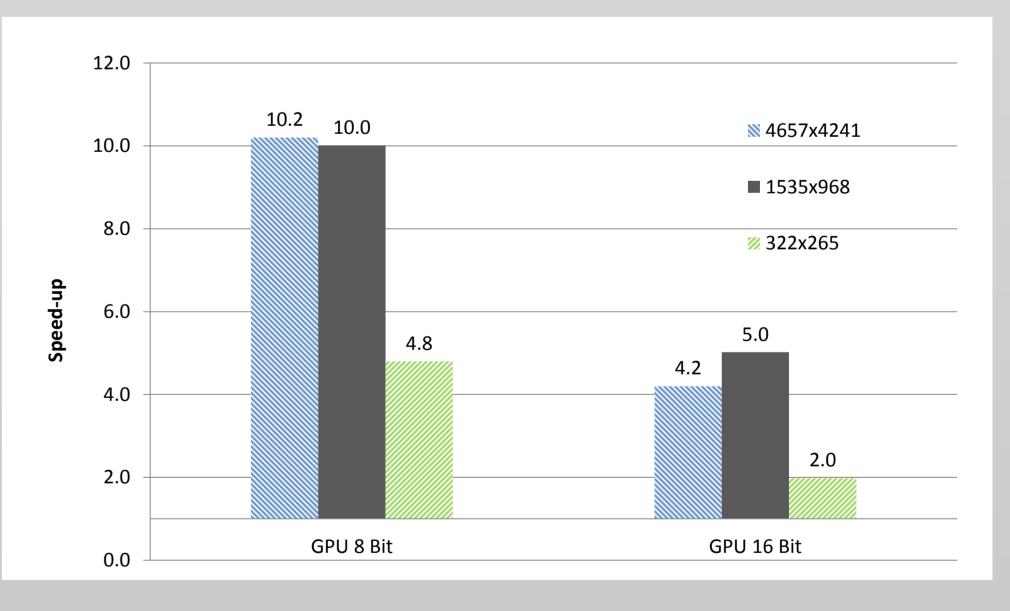
16-Bit BGR-NIR Data Format


Modification to NDVI Algorithm : Changing Order of Bands

Conclusions

- Large images expose potential of GPUs.
- GPUs provide significant speed ups for processing of satellite images where images are typically large.
- Use shorter data representation whenever possible to reduce the data transfer time.
- Re-ordering the data in BGR format enables a more efficient memory usage for vegetation detection.

Effect Of Memory Transfer To Performance


Results of Used Algorithms

Experiments are performed on a PC having Intel Core i7 860 CPU and 8 GB usable RAM. The GPU algorithms are tested with NVIDIA GTX 460.

	Image Size	Time (ms)	Mpixels/s
	322x265	3.04	112.28
GPU 8 Bit Data	1535x968	15.6	380.99
	4657x4241	163.2	484.08
	322x265	5.06	67.45
GPU 16 Bit Data	1535x968	31.08	191.23
	4657x4241	397.45	198.77
	322x265	14.62	23.35
CPU 8 Bit Data OpenMP	1535x968	156.22	38.05
	4657x4241	1866.28	47.41
	322x265	18.42	18.53
CPU 8 Bit Data	1535x968	311.23	19.10
	4657x4241	4004.91	19.73
	322x265	10.03	34.03
CPU 16 Bit Data OpenMP	1535x968	156.08	38.08
	4657x4241	1688.06	46.80
	322x265	14.03	24.33
CPU 16 Bit Data	1535x968	371.08	16.02
	4657x4241	4467.75	17.68

8-Bit and 16-Bit Speedup Comparisons

NDVI Algorithm Improvements

Further optimization is possible by:

- Removing Blue and Green bands from preprocessing

Number of Bits	Band Order	Time (ms)	Mpixels/s	
8-Bit	RGB-NIR	13.08	455	
8-Bit	BGR-NIR	9.57	621	
16-Bit	RGB-NIR	20.37	292	
16-Bit	BGR-NIR	19.49	305	

[1] Tucker, C.J., "Red and Photographic Infrared Linear Combinations for Monitoring Vegetation", Remote Sensing of Environment, 8(2),127-150, 1979.

CPU and GPU Performance Comparison For Complex NDVI Algorithm

• Then changing band order on GPU Implementation to have Red and NIR bands next to each other

References