
Results of Used Algorithms Results of Used Algorithms

Püren GÜLER, Deniz EMEKSİZ, Alptekin TEMİZEL

Graduate School of Informatics
Middle East Technical University, Ankara, Turkey

e170986@metu.edu.tr, e171000@metu.edu.tr, atemizel@ii.metu.edu.tr

Camera Sabotage Detection (CSD) algorithms, namely Camera Moved Detection, Camera Out of Focus
Detection and Camera Covered Detection, are used to detect tampering attempts on surveillance cameras
in real-time. CSD algorithms are required to be run on a high number of cameras, bringing high
computational load to the video analytics systems. Importance of speeding up of these algorithms are two
fold:
• Enabling operation on all cameras and hence reducing security lapses ,
• Leaving valuable computational power to other video analytics algorithms such as object tracking and

activity analysis.
In this work, the CSD algorithms that were previously developed by our group [1] are accelerated by using
parallelization methods in CUDA. While different algorithms have different speed-up rates, the overall
system test results show that parallelization in GPU makes the system 18 times faster than its CPU
counterpart and up to 400 cameras can be supported in real time on a GTX 470.

References

References

Camera Covered Detection

Camera Moved Detection

Camera Out of Focus Detection

General Flow of The Algorithms

This research is funded by Ministry of Science, Industry and Technology SAN-TEZ program grant number 00542.STZ.2010-1.

Background Estimation

Camera Covered Detection

Camera Moved Detection

Camera Out of Focus Detection

Difference Image Calculation
• Difference image is generated by subtracting

background frame from the current frame and
obtaining the absolute value of the result then the
histograms of current, background and difference
frames are checked to detect if the camera is
covered.

• In CUDA version, each pixel is calculated in
parallel.

Sum Reduction
• Pixels that are different in current and delayed background should be counted in order to compute a

proportion value.
• For sum reduction, the final optimized kernel in reduction implementation by CUDA [4] is used.

The differences that are made in this work:

o Adding the following condition to account for increased maximum number of threads/block :
if (blocksize >= 1024) {

 if (tid < 512) sdata[tid] += sdata[tid + 512];

 __syncthreads();

}

o Using volatile structure while doing operations in a single warp in order to write the values into
shared memory instead of registers [5]. Because in Fermi architecture, without __synchreads(),
volatile memory is required to synchronize threads in a warp.

DCT Calculation
• Discrete Cosine Transform (DCT) implementation of

NVIDIA GPU Computing SDK 4.0 [6] is used instead of
Fast Fourier Transform (FFT) used in the original
algorithm.

• High pass filter kernel is modified accordingly.
• Frames are partitioned into 8x8 blocks to discard the

regularly moving blocks to prevent false alarms.

Detect Regularly Changing Pixels
• The difference from the background subtraction algorithm in [2] is detection of regularly changing

pixels.

 𝑀𝑛 𝑥, 𝑦 =
𝑀𝑛 𝑥, 𝑦 + 𝛽 𝐼𝑛 𝑥, 𝑦 − 𝐵𝑛 𝑥, 𝑦 , 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑚𝑜𝑣𝑖𝑛𝑔

𝑀𝑛 𝑥, 𝑦 − 𝛾 𝐼𝑛 𝑥, 𝑦 − 𝐵𝑛 𝑥, 𝑦 + 1 , 𝑖𝑓 𝑥, 𝑦 𝑖𝑠 𝑛𝑜𝑛 𝑚𝑜𝑣𝑖𝑛𝑔

Detect Moving Pixel Blocks
• Moving blocks are 8x8 blocks that contain at least one moving pixel. Detection of these blocks is

necessary in to exclude regularly moving areas.

Histogram Calculation

• For histogram calculation, the algorithm developed in our VRCV
group is used [3].

• Histogram bins should be equal to the number of colors in the input
image to get efficient results as atomicAdd() operation results in race
condition.

• 256 bin histograms for current, background and difference frames
are generated.

convert256To32Bin<<<(histogramSize/B/2),B>>>

(hist, hist_out, n)

{

 __shared__ sdata[B];

 //each thread loads one element from

 //global to shared mem

 tid = threadIdx.x;

 i = blockIdx.x*(blockDim.x*2) +

 threadIdx.x;

 gridSize = B*2*gridDim.x;

 sdata[tid] = 0;

 __syncthreads();

 while (i < n)

 {

 sdata[tid] += hist[i] + hist[i+B];

 i += gridSize;

 }

 __syncthreads();

 //since the block size for histogram does

 //not exceed 8 for a 256 bin histogram to

 //convert 32 bin

 if (tid < 8)

 {

 volatile int *smem = sdata;

 if (blocksize >= 8)

 smem[tid] += smem[tid + 4];

 if (blocksize >= 4)

 smem[tid] += smem[tid + 2];

 if (blocksize >= 2)

 smem[tid] += smem[tid + 1];

 }

 //write result for this block to global mem

 if (tid == 0)

 {

 hist_out[blockIdx.x] = sdata[0];

 }

}

Conversion from 256 bin to 32 bin
• A parallel sum reduction technique similar to [4] is applied.
• While converting 256-bin to 32-bin, each 8 consecutive bins put in the same block, thus block size is 8.
• Histogram size is divided into block size and then into 2 for optimization processed described in [4].
• In the Fermi architecture, volatile memory should be used in order to write the values into shared

memory instead of registers [5].

A modified version of WrapperCuda2 function of dct8x8 implementation of CUDA is used :
• Memory allocations are moved outside the function so that they are not performed for each frame.
• CopyByte2Float and AddFloatPlane C functions are moved into separate kernels. They are

straightforward kernels that process each pixel in parallel.
• Instead of using CUDAkernelQuantizationFloat kernel, a new kernel is implemented that use Gaussian

windowing function to have a similar effect as in [1] to filter out low frequencies:

CUDAkernelQuantizationFloat
int quantized = (int)((curCoef / curQuant)+0.5f);

curCoef = (float)quantized * curQuant;

Our kernel
float quantized = curCoef * curQuant;

High Frequency Calculation
• High frequency data is summed inside the kernel.

When a camera is moved to a different
direction, the background image starts to be
updated to reflect the changed view: A
delayed background is also kept to detect
such change.
• Each pixel is processed by one thread.
• Grid size is frame size/block size.
• Each pixel is checked and if it is regularly

moving it is ignored. If non-moving , a
proportion value is calculated by pixel on
background to corresponding pixel on
delayed background.

Speedup

[1] Saglam, A., & Temizel, A. (2009). Real-Time Adaptive Camera Tamper Detection for Video Surveillance. 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance AVSS '09, (pp. 430-435).
[2] Temizel, A., Halıcı, T., Loğoğlu, B., Taşkaya Temizel, T., Ömrüuzun, F., & Karaman, E. (2011). Experiences on Image and Video Processing with CUDA and OpenCL. In GPU Computing Gems 1, NVIDIA. Elsevier.
[3] Teke, M. (2011). Satellite Image Processing on GPU Technical Report. Retrieved from http://www.ii.metu.edu.tr/coursewebsites/quda/mteke/Satellite_Image_Proc_GPU_Paper.pdf
[4] Harris, M. (2008). Optimizing Parallel Reduction in CUDA. Retrieved from http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
[5] NVIDIA Corporation. (2010, August). Fermi Compatibility Guide for CUDA Applications. Retrieved from http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/Fermi_Compatibility_Guide.pdf
[6] Obukhov, A., & Kharlamov, A. (2008, October). Discrete Cosine Transform for 8x8 Blocks with CUDA. Retrieved from http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/dct8x8/doc/dct8x8.pdf

Abstract Abstract Background Estimation Background Estimation Camera Covered Detection Camera Covered Detection Results of Used Algorithms Results of Used Algorithms

Results of the Overall System Results of the Overall System

Camera Moved Detection Camera Moved Detection Camera out of Focus Detection Camera out of Focus Detection

Experiments are performed on a PC having Intel Core i7 CPU and
3.5 GB usable RAM. The GPU algorithms are tested with Quadro
2000 and NVIDIA GTX 470.

Speedup

 160x120 320x240 640x480

Quadro 2000 2.15 2.53 2.56

GTX 470 2.13 2.69 3.02

0.79

1.34

4

0.8
1.26

3.38 1.7

3.39

10.22

0.1

1

10

100

160x120 320x240 640x480

M
e

as
u

re
d

 t
im

e
 (

m
s)

Frame Size

Quadro 2000

GTX 470

CPU

Speedup

 160x120 320x240 640x480

Quadro 2000 1.44 5.13 9.71

GTX 1.90 6.73 14.17

1.35

2.06

5.47

1.02

1.57

3.75

1.94

10.56

53.14

1

10

100

160x120 320x240 640x480

M
e

as
u

re
d

 t
im

e
 (

m
s)

Frame Size

Quadro 2000

GTX 470

CPU

 160x120 320x240 640x480

Quadro 2000 5.73 11.84 19.18

GTX 470 7.33 21.19 47.18

Speedup

1.47

2.81

7.55

1.15
1.57

3.07

8.43

33.27

144.84

1

10

100

1000

160x120 320x240 640x480

M
e

as
u

re
d

 t
im

e
 (

m
s)

Frame Size

Quadro 2000

GTX 470

CPU

 160x120 320x240 640x480

Quadro 2000 4.41 7.34 11.41

GTX 470 4.66 10.60 18.44

2.64

5.8

16.29

2.5
4.02

10.08

11.65

42.6

185.88

1

10

100

1000

160x120 320x240 640x480

M
e

as
u

re
d

 t
im

e
 (

m
s)

Frame Size

Quadro 2000

GTX 470

CPU

379

172

61

400
249

99

86

23

5

1

10

100

1000

160x120 320x240 640x480

N
u

m
b

e
r

o
f

ca
m

e
ra

s

Frame Size

Quadro 2000

GTX 470

CPU

To integrate background subtraction to the system, CUDA code previously developed by our Virtual
Reality and Computer Vision (VRCV) group is used [2].
• Pixels are reached as integers rather than char to optimize memory access. So each four pixels are

processed in one thread, since four pixels(char) create an integer [2].
• Background frame is created as a 2-D frame, since for DCT implementation of CUDA used in Camera

Moved Detection, 2-D arrays are needed as inputs.

For 1-D:
 i = blockDim.x * blockIdx.x + threadIdx.x;

For 2-D:
actualImg_row = i/(frame_width/4);

actualImg_col = (i%(frame_width/4))*4;

index_bn = actualImg_row*bn_stride_int+(i%(frame_width/4));

Difference

image

calculation:

Dn

Difference

image

calculation:

Dn

Convert 256-

bin to 32 bin

Convert 256-

bin to 32 bin

Compare

histograms

Compare

histograms

256-bin

histogram

calculation:

HIn, HBn, HDn

256-bin

histogram

calculation:

HIn, HBn, HDn

In

Bn

In

Bn

Dn

HIn

HBn

HDn

HIn32

HBn32

HDn32

Find different

pixels in Bn

and Bn-T

Find different

pixels in Bn

and Bn-T

Sum number of

these pixels

Sum number of

these pixels

Bn

Bn-T

Mn

ratio=

summation

/

frame size

ratio=

summation

/

frame size

Bn
High

frequency

calculation of

Bn for finding

threshold

High

frequency

calculation of

Bn for finding

threshold

Compare

ratio and

thresholds

Compare

ratio and

thresholds

Partition

images into

8x8 blocks

Partition

images into

8x8 blocks

In

Bn

Calculation of

high frequency

content for

each block

Calculation of

high frequency

content for

each block

In

Bn

Ignore

moving

blocks

Ignore

moving

blocks

LUTn Compare high

frequency

content of In

and Bn

Compare high

frequency

content of In

and Bn

Background Subtraction

Update Bn Update Bn
Update

Mn
Update

Mn
Calculate

MPn
Calculate

MPn
Calculate

LUTn
Calculate

LUTn

In

In-1

Mn MPn

In : Current frame
In-1: Previous frame
Bn: Current background frame
Bn-20 :20 frames prior to current background frame
Mn: Image that keeps track of changing pixels
MP: Moving pixel map
LUTn: Lookup table matrix showing moving blocks

Dn : Difference image
Hın : 256 bin histogram of current image
HBn : 256 bin histogram of background
HDn : 256 bin histogram of difference image
Hın32 : 32 bin histogram of current image
HBn32 : 32 bin histogram of background
HDn32 : 32 bin histogram of difference image

Camera Covered Detection

Camera Moved Detection

Camera Out of Focus Detection

Number of cameras supported
 160x120 320x240 640x480

Quadro 2000 379 172 61

GTX 470 400 249 99

CPU 86 23 5

 // Block index

 bx = blockIndex.x;by = blockIndex.y;

 row = by * B; col = bx * B;

 localSum=0;

// lut_mpb holds the moving block information so

that high frequency data in a block that has

moving pixel is excluded from the calculation

if(lut_mpb[by*strideLut+bx] != 1)

{

 for(i=row; i<row+B; i++)

 {

 for(j=col; j<col+B; j++)

 {

 localSum += frame_dct[i*strideFrame+j];

 }

 }

 }

 dct_sum[by*strideDctSum+bx] = localSum;

