
oalesced Simulation of the Incompressible Navier-Stokes
 Equations over an Airfoil Using Graphics Processing Units

oalesced Simulation of the Incompressible Navier-Stokes
 Equations over an Airfoil Using Graphics Processing Units

University of Tehran
S. M. Iman Gohari, Vahid Esfahanian, Hamed Moqtaderi, Hossein Mahmmodi Darian

Department of Mechanical Engineering, College of Engineering, University of Tehran, Iran.

Abstract

This work presents a Graphics Processing Unit (GPU) based implementation of the Finite Differencing Time
Domain (FDTD) methods, for solving unsteady incompressible viscous flow over an airfoil using the Stream
function-Vorticity formulation for the structured grid. For the large-scale simulations, FDTD methods can be

computationally expensive and require considerable amount of time to solve on traditional CPUs. On the contrary,
modern GPGPUs such GTX 480 are designed to accelerate lots of independent calculations due to advantage of their
highly parallel architecture. In present work, the main purpose is to show a configuration for leveraging GPU processing
power for the computationally expensive simulations based on explicit FDTD method and CUDA language. Our
implemented calculation for the GPU FDTD simulation has efficient global memory coalescence with 66.67% of
occupancy. Both GPU based versions of flow simulation and grid generation are over 28 and 150 times faster than a
sequential CPU based versions, respectively. In Addition to time comparison, GPU performance analyzing is done
through the NVIDIA Visual Profiler Software and it is demonstrated that memory throughput of present GPU calculation
is about 60% of its theoretical value.

Numerical Implementation
The incompressible Navier-Stocks equations are solved numerically with the Stream Function and Vorticity

formulation for the structured grid. It is clear that Every CFD simulation needs appropriate computational grid.
Therefore, grid generation is one of most important part of CFD simulations. In addition, some CFD simulations need
grid adaptation and refinement. This procedure needs grid regeneration and sometimes takes more time than the flow
simulation itself. In the present simulation both flow simulation and grid generation is done through the GPU. The
Stream function-Vorticity formulation needs the orthogonal grid points with the desirable grid spacing to capture the
high velocity gradient in the boundary layer. Steger shown the iterative procedure for constructing the computational grid
which is used in the present work. The numerical simulation of the unsteady incompressible Navier-Stokes equations for
the laminar and turbulent flow about arbitrarily shaped two-dimensional airfoils is also considered. This solution is based
on the technique of numerical generation of a curvilinear coordinate system which has coordinate lines coincident with
the airfoil contour regardless of its shape. The explicit simulation utilizes the Vorticity-Stream function formulation with
the direct satisfaction of the no-slip condition on the airfoil surface.

GPU Based Solvers have been developed upon the following features:

Grid Generation:

Stream Function-Vorticity Formulation:

1)

3) Algebraic Turbulence Model, Baldwin Lomax.

5) Second order central scheme for the diffusion terms.

Finite difference approximations.
2) Unsteady Flow.

4) First or second order Upwind scheme for the convection terms.

6) Over relaxed Jacobi algorithm.

Results
Computational Implementation:

Simulation validated by Blasius Similarity solution of Laminar Flow:

GPU Implementation

Skin Friction (Left) and Pressure Coefficient (right), NACA 0012, Re=5000 AoA=0.0

GPU structure grid over NACA 0012: over view (left), close view (right)

Skin friction (Left) and veocity profile (right), Flat plate, Re=100000

Grid Size CPU time GPU Time Speedup

128*256 113.6 7720.25 67.95

256*256 200.00 13561.25 67.80

512*256 370.96 27757.42 74.83

512*512 724.76 91364.54 126.06

512*1024 1413.82 213113.21 150.73

Grid Size CPU time GPU Time Speedup

256*256 221.15 6241.85 28.24

512*256 434.07 12565.19 28.93

512*512 863.11 24976.37 28.95

1024*512 2297.50 48788.64 29.57

1024*1024 3267.00 83567.66 25.58

Comparison between GPU and CPU Time:

Grid Generation Flow Solver

Performance Analyzing

Memory throughput
(Grid Generation)

Memory throughput
(Flow Solver)

G. M. Performance
(Grid Generation)

G. M. Performance
(Flow Solver)

Occupancy

98.79 GB/s 105.21 GB/s 55.68% 59.30% 66.67%

Here the is evaluated in the terms of occupancy and Global Memory throughput. By
burning in mind that the total memory bandwidth of GTX 480 is 177.4 GB/s.

GPU Performance

Conclusions
We have investigated two dimensional unsteady ?ow solver for the incompressible Navier-Stokes equations based on

Stream function-Vorticity formulation for graphics processing units. Both grid construction and flow simulation have
been taken placed through GPU kernels with the Finite Differencing Time Domain (FDTD) method. We have shown that
the one dimensional configuration of GPU CTAs can reliably provide higher coalesced memory access pattern. In
addition, one dimensional CTA configuration has fewer redundancies in global memory requests in contrast to two
dimensional one. Consequently, the present method has lower limit on GPU memory bandwidth. Both GPU based
versions of flow simulation and grid generation are over 28 and 150 times faster than a sequential CPU based versions,
respectively. In Addition to time comparison, GPU performance analyzing was done through the NVIDIA Visual Profiler
Software and it was demonstrated that memory throughput of present GPU calculation was about 60% of its theoretical
value.

Flowchart of the GPU-enabled solver

Global memory requests for present CTA configuration

Global memory requests for regular CTA configuration

Cooperative Thread Array (CTA) is an array of simultaneous threads that cooperate and execute to computea desire result. In
the GPU programming model, the thread block is the CTA. CTA con?guration i.e. size, shape, dimension are declared by
programmer and has major effect on GPU performance and runtime. In the presence of signi?cantly larger number of cores on the
GPU in the contrast to CPU, in order to fully saturate the available computational resources, 1D CTA con?guration is considered.
Present strategy of a 1D CTA shows higher speedup and performance than the regular 2D one. present work with the following
consideration has higher performance:

 Transferring data segments from global memory of graphics card is carried out by the
global memory requests. Threads within the same warp have a
coalesced memory requests for loading specific memory region
when they can load the data segments by fewer requests. To have
highly coalesced memory access pattern, it is required to have as
fewer as possible redundancies in memory requests generated by
each thread to eliminate the expense of associative search hardware
and alleviate the schedule of each SM. The present GPU method has
great reduction in global memory requests as illustrated in below
figures.

Higher Memory Access Coalescing:

CC
Vehicle, Fuel & Environment Research Institute

	Page 1

