LLO
Q)j\i. N 04'/

@/1

& PENNSY\‘\.

e,

Cagy,
"00 M\s.y,

\d
L3
Qs

Senaka Buthpitiya, lan Lane, Jike Chong

senaka.buthpitiya@sv.cmu.edu, ianlane@cs.cmu.edu, jike.chong@sv.cmu.edu

Rapid Training of Acoustic Models Using GPUs

Department of Electrical and Computer Engineering, Carnegie Mellon University, Silicon Valley

Goals

< State-of-art speech recognition systems are trained on thousands
of hours of speech data, which can take many weeks even on large
clusters

< Training requires:
« Calculating observation probabilities
« Aligning audio with transcripts
+ Estimating model parameters
» Repeat process multiple times

« This computation bottleneck limits the number of new ideas and
concepts speech experts can explore and validated in a timely
manner
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Approach

+ Viterbi training used to estimate the parameters of an
hidden-Markov-model (HMM) based acoustic model .

— Observation Probability Computation

+ GMM:-level parallelism - 10KB of model data - fits into scratch space on the GPU
Threads parallelize over the observation samples
» Leverage special left-right HMM model structure « Thread blocks parallelize over the GMMs

commonly used in speech recognition while heavily « Each thread in a thread block performs all computations for one time step

optimizing the observation probability computation

Effectively organize the training algorithm into threads
and thread-blocks and leverage available memory
resources and synchronization capabilities to efficiently

— Alpha Computation

« Calculate optimal match between the transcript and the acoustic input
« Calculation is time-synchronous — present output depends of previous outputs
« Parallelize utterances per thread block — For optimal memory access speed
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execute on a manycore computation platform
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Backtracking Computation

« Trace one-best path best aligning GMM states to acoustic input observations
« Naive implementation causes severe bottleneck with excess memory reads
« We implement using a pre-fetch optimization

« Fully utilize load bandwidth

« Minimize memory latency caused by the pointer chasing operations
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Transition Counts Batches? |
M-Step | « Updates aggregated statistics using aligned and labeled input observations
|/ « Extremely large number of values to update — suffers from over/underflows
| Generate New G lobal Model " « Parallelize by mapping each utterance to a thread block
_—— e e = = = — — « First aggregate the histogram information within an utterance locally

Training flow for one training iteration

Maximization Step

« Then merge local results from each thread block to the main model

»

Experimental Evaluation

* GPU implementation on Intel Core i7-2600k CPU machine with two
NVIDIA GTX580 GPU cards (approx. $2k)

« Traditional implementation on a 32-core Xeon server (approx. $30k)
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« A 32-core Xeon server has only 7.5% performance advantage over a
single GPU system

» With two GTX580, training 67% faster than a 32-core Xeon server
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« Speech corpora used in this evaluation consisted of 122hrs and
approximately 150k utterances of speech collected from headset,
lapel and far-field microphones from 168 sessions (AMI Meeting
Corpus3)

« Data is replicated to generate larger training sets up to 10,000 hrs

Conclusions

1. Proposed approach is 51x faster than a sequential CPU
implementation

2. Trains an acoustic model with 8000 codebook of 32-component
GMs on 1000 hours of data in 9 hours

3. This empowers researchers to rapidly evaluate new ideas to build
accurate and robust acoustic models on very large training
corpora




