
Senaka Buthpitiya, Ian Lane, Jike Chong
Department of Electrical and Computer Engineering, Carnegie Mellon University, Silicon Valley

senaka.buthpitiya@sv.cmu.edu, ianlane@cs.cmu.edu, jike.chong@sv.cmu.edu

Goals
•! State-of-art speech recognition systems are trained on thousands

of hours of speech data, which can take many weeks even on large
clusters

•! Training requires:
•! Calculating observation probabilities
•! Aligning audio with transcripts
•! Estimating model parameters
•! Repeat process multiple times

•! This computation bottleneck limits the number of new ideas and
concepts speech experts can explore and validated in a timely
manner

Approach

!"#$%$%&'()*'+)"')%,'-"#$%$%&'$-,"#.)%'

•! GMM-level parallelism - 10KB of model data - fits into scratch space on the GPU
•! Threads parallelize over the observation samples
•! Thread blocks parallelize over the GMMs
•! Each thread in a thread block performs all computations for one time step

/01,"2#.)%'3")0#0$4$-5'6)789-#.)%

•! Calculate optimal match between the transcript and the acoustic input
•! Calculation is time-synchronous – present output depends of previous outputs
•! Parallelize utterances per thread block – For optimal memory access speed

:48;#'6)789-#.)%'

•! Trace one-best path best aligning GMM states to acoustic input observations
•! Naïve implementation causes severe bottleneck with excess memory reads
•! We implement using a pre-fetch optimization
•! Fully utilize load bandwidth
•! Minimize memory latency caused by the pointer chasing operations

<#=>-"#=>$%&'6)789-#.)%'

•! Updates aggregated statistics using aligned and labeled input observations
•! Extremely large number of values to update – suffers from over/underflows
•! Parallelize by mapping each utterance to a thread block
•! First aggregate the histogram information within an utterance locally
•! Then merge local results from each thread block to the main model

?#@7A#.)%'B-,8'

Experimental Evaluation
•! GPU implementation on Intel Core i7-2600k CPU machine with two

NVIDIA GTX580 GPU cards (approx. $2k)
•! Traditional implementation on a 32-core Xeon server (approx. $30k)

Time required for single training iteration with on a 1000hr corpus

Component-wise timing
breakdown for a 1000-hour

training set on (GPU)

•! A 32-core Xeon server has only 7.5% performance advantage over a
single GPU system

•! With two GTX580, training 67% faster than a 32-core Xeon server

Observation
Probability
Claculation

68.47%

Load
Utternaces

12.01%

E-Step
12.91%

M-Step
6.61%

Conclusions
1.! Proposed approach is 51x faster than a sequential CPU

implementation
2.! Trains an acoustic model with 8000 codebook of 32-component

GMs on 1000 hours of data in 9 hours
3.! This empowers researchers to rapidly evaluate new ideas to build

accurate and robust acoustic models on very large training
corpora

!"#$%&'

!"#$%!'

!"#(%%'

!"#(%!'

!"#(%&'

!"#(%)'

!"#(%*'

!' !%' !%%' !%%%' !%%%%'!"
#$
%$
%&
'!
$(

)'
*'+

%)
',-
)"
#.

/%
'01

/2
"3
4'

!"#$%$%&'5#-#'01/2"34'

+,-./0,'123'4/56,67'894:;'

+,-./0,'12'4/56,67'894:;'

+,-./0,'123'4/56,67'8<4:;'

6'1/2"'/7'
"2%.()'

89:'1/2"3'

;69;'1/2"3'

6<=:9;'1/2"3'

6>>>>'1/2"3'/7'
!"#$%$%&'5#-#'

?9;'
1/2"3'

;:>'
1/2"3'

6;@;'
1/2"3'

•! Viterbi training used to estimate the parameters of an
hidden-Markov-model (HMM) based acoustic model

•! Leverage special left-right HMM model structure
commonly used in speech recognition while heavily
optimizing the observation probability computation

•! Effectively organize the training algorithm into threads
and thread-blocks and leverage available memory
resources and synchronization capabilities to efficiently
execute on a manycore computation platform

•! Speech corpora used in this evaluation consisted of 122hrs and
approximately 150k utterances of speech collected from headset,
lapel and far-field microphones from 168 sessions (AMI Meeting
Corpus3)

•! Data is replicated to generate larger training sets up to 10,000 hrs

