
CUDA-Based GPU Computing Framework for GNU Octave

Inspired by Jacket from AccelerEyes - GPU Engine for Matlab®*
Jaideep Singh, Indian Institute of Technology Roorkeee, INDIA

Introduction

This poster presents the design of a CUDA-

based parallel processing framework for GNU

Octave[1]. GNU Octave is a high-level

interpreted language, primarily intended for

numerical computations. GNU Octave being

an open source alternative to Matlab®, is

widely used in academic and research

institutes. This work is inspired by the design

and functionalities of Jacket[2], a GPU Engine

for Matlab®. Introduction of new GPU types

helps to avoid any data transfers over PCIe in

moving from one GPU routine to another. To

my knowledge, this is the first attempt to

build a GPU framework for Octave, contrary

to previous attempts to provide GPU variants

for a set of Octave functions.

History of Parallel

Computing in Octave

•The development of a complete interface to

the main parallel programming libraries for

Octave had been never accomplished [3]

before MPI Toolbox for Octave (MPITB).

MPITB[4] allows Octave users to build their

own LAM/MPI based parallel applications.

•After the introduction of CUDA technology

in 2006, there have been some attempts to

enable GPU computing in Octave using

CUDA, which can be found in Octave mailing

list [5].

•This has been limited to providing a plug-in

with a set of GPU accelerated routines for

commonly used Octave functions

•This approach suffers a serious drawback as

it incurs a data transfer over PCIe (limited to

8 GB/s in PCI x16 generation) between CPU

and GPU memory in every GPU function call

which severely limits the performance of this

design.

Design Approach

• GNU Octave is written in C++ and supports extensions on

itself, by the use of dynamically loaded modules, and shared

libraries.

• Object hierarchy is supported in GNU Octave with the

help of a type system. We can inherit a type from

octave_value, the canonical holder, and implement its virtual

functions so that we have a new type to work with.

•When the custom class (which inherits from octave_value

class) describing the new data type is compiled into a shared

object (.oct), the symbols are exported into the library

without linking to the octave library.

• Octave searches and loads the DEFUN_DLD functions

defined in custom class from the .oct file and invokes the

same with the arguments.

• In our case, we inherit from octave_value and introduce

new data types, termed as gpuTypes in this poster, which

hold data in GPU device memory and can be passed to GPU

functions for GPU-based processing by launching kernels or

calling GPU libraries.

•Arithmetic and logical operators are overloaded, which

perform intuitive functions on the object from the

interpreter itself.

• Octave v3.2.3 came with OOP support. Octave users can

now create custom classes and overload functions which are

given precedence over the generic versions by the Octave

runtime.

• Octave runtime searches for the functions definitions based

on the parameter list and thus this method can be used to

overload Octave built-in routines.

Implementation of CUDA-GPU

Framework

•A new data type, gFloat is introduced into the Octave

runtime by building a custom C++ class that extends from

octave_value.

• Since the Octave interpreter recognizes the gFloat data

type, we can define member functions for the gFloat class

which can launch CUDA kernels to perform computation

on the gFloat class objects on the GPU. The various logical

and arithmetic operators are overloaded for the gFloat

class.

•All the routines that operate on gFloat class are prefixed

with ‘gpu’ as the Octave interpreter calls the generic

implementations of built-in routines rather than class

member routines.

•This limitation is removed by implementing a wrapper

class over gFloat, viz. gpuFloat using Octave OOP

features, which allows us to overload Octave built-in

routines like the mathematical functions; e.g. exp, log and

many others as shown below.

% gpuFloat class constructor
function out = gpuFloat(in)

% out.data holds gFloat object and can be used in
% member functions to perform arithmetic
if (nargin == 1)

if(strcmp(class(in),'gFloat'))
out.data = in;
out = class (out, "gpuFloat");
return;

endif
% Make copy of CPU vector/matrix in GPU memory
if (isreal (in))

out.data = gsingle(in);
out = class (out, "gpuFloat");

else
out.data = [0];
out = class (out, "gpuFloat");

endif
endif,
end

Profiling GPU Framework For

Performance

For profiling the GPU framework developed for Octave,

two samples hosted on the AccelerEyes site, viz.,Monte-

Carlo Simulation of Pi [6] and Black-Scholes Financial

Computation were used. The code is written in Octave

‘M’ language. After casting the variables to gpuTypes, the

same code gets acceleration on the GPU with no extra

programming effort.

Monte-Carlo Estimation of PI Benckmark*

Black-Scholes Financial Computation Benchmark*

Advantages & Capabilities of the GPU Framework

•The framework allows Octave users to accelerate their software written in Octave high-level ‘M’ language on GPUs with minimal

code modifications. After casting data into gpuTypes, the same code gets accelerated many times on the GPUs.

•The framework allows users to build wrappers around CUDA-based high performance GPU libraries like nVidia’s cuBlas, cuFFT and

other 3rd party libraries for accelerating BLAS and linear algebra routines on GPUs.

• Data that resides in GPU memory can be visualized directly using CUDA-OpenGL interoperability, avoiding any data movements and

can be used to run visual simulations at accelerated speeds.

•The framework scales computations to multiple GPUs in the system. It provides the user with the option of selecting a particular

device for execution and synchronization functions.

Conclusion And Future Work

The GPU framework presented in this poster allows Octave users to

leverage massively parallel CUDA cores to accelerate Octave processing.

The benchmarks show that this framework is capable of accelerating

applications written in Octave M-language with no code modifications.

The GPU Octave framework is completely transparent to the user and

can be extended easily to become more useful to the Octave user

commuting. The framework is designed such that it can be used

by Octave users to transfer computations onto the GPUs with

no prior experience in CUDA or GPGPU in general.

Future course involves building more GPU classes and routines to make

the framework more generic. Graphics support using OpenGL to

visualize GPU data on the fly while performing simulations can be easily

added to this framework. The emergence of GPU math-libraries like

libJacket from AccelerEyes, which provides a huge set of mathematical

routines, can be easily integrated into this framework.

References :

[1] Octave, http://www.gnu.org/software/octave/.

[2] AccelerEyes,GPU Computing with Matlab®, Python, C, C++, Fortran, www.accelereyes.

com .

[3] J.W. Eaton, J.B. Rawlings,“Ten years of Octave – Recent developments and plans for

the future”, in DSC 2003 Proceedings of the 3rd Int.Wshp. on Dstr.Stat.C, March 2003,

Vienna Austria.

[4] MPITB for Octave: Octave Parallel Computing with LAM/ MPI and Open-MPI

http://atc.ugr.es/~javier/mpitb_old.html

[5] P. Kienzle, et al. “Octave-Forge repository”: http://octave.sourceforge.net/, May, 2011,

announcement seen in http://www.octave.org/octave-lists/archive/octave-

sources.2001/msg000 10.html , Oct, 2001.

[6] Jacket Application Examples- http://www.accelereyes.com/support/application_examples

% Number of trials : CPU Version
for i=1:5
NSET = number_of_trials(i);

X = single(rand(1, NSET));
Y = single(rand(1, NSET));

tic;
distance_from_zero = sqrt(X.*X + Y.*Y);
inside_circle = (distance_from_zero <= 1);
pi_result = 4 * sum(inside_circle) / NSET;
t_result = toc;
end

% Number of trials : GPU Version
for i=1:5
NSET = number_of_trials(i);

X = gpuFloat(rand(1, NSET));
Y = gpuFloat(rand(1, NSET));
gsync(); % Synchronize with CPU

tic;
distance_from_zero = sqrt(X.*X + Y.*Y);
inside_circle = (distance_from_zero <= 1);
pi_result = 4 * sum(inside_circle) / NSET;
t_result = toc;
end
gsync();

Input Data Size CPU_time(sec) GPU_time(sec) Speedup

24000x1 0.178541 0.059402 3.00564

64000x1 0.472425 0.063777 7.40745

104000x1 0.776785 0.072706 10.6839

164000x1 1.235121 0.125247 9.86148

Number of Trials CPU_time(sec) GPU_time(sec) Speedup

131072 0.002070 0.002507 0.825773

524288 0.020664 0.007324 2.820955

1048576 0.056381 0.017415 3.237888

8388608 0.164864 0.037373 4.050907

16777216 0.326206 0.073764 4.422301

*System Specifications :

CPU: Intel® Core™ i7-2630QM CPU, 6M Cache, 2.00 GHz with 6 GB RAM

GPU : nVidia GeForce GT 540M, 96 CUDA cores @ 1.344 GHz, nVidia driver v270.41, Octave v3.2.3, CUDA 3.2

*Matlab(R) is a registered trademark of MathWorks

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.accelereyes.com/
http://www.accelereyes.com/
http://www.accelereyes.com/
http://www.accelereyes.com/
http://www.accelereyes.com/
http://www.accelereyes.com/
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://atc.ugr.es/~javier/mpitb_old.html
http://www.accelereyes.com/support/application_examples
http://www.accelereyes.com/support/application_examples
http://www.accelereyes.com/support/application_examples
http://www.accelereyes.com/support/application_examples
http://www.accelereyes.com/support/application_examples
http://www.accelereyes.com/support/application_examples
http://www.accelereyes.com/support/application_examples

