

• NVIDIA’s CUDA compiler aggressively combines double
precision addition and multiplication into floating point-
multiply-add (FMAD) instructions [3] on GT200 GPU
hardware. The addition is truncated to be faster on the
GPU which makes the CPU more accurate.

• On Fermi, a fused-multiply-add (FMA) is used. The
addition and multiplication only encounter a single
rounding. The GPU is more accurate.

• A common source of errors is the boundary between
floating and fixed point code. Floating point values are
often cast to integers for image display. Errors are
easily introduced. Correct casting should be used.

• Different modes of division - The default on compute
capability 1.3 GPUs is approximate division in single
precision. Using default conditions, the CPU is more
accurate.

• Digital Breast Tomosynthesis (DBT) is a mammography

algorithm that creates a 3D image from the data of 15 X-
ray scans to aid in the search for cancerous tissues.

• Original code was developed by MGH and ported to the
GPU at Northeastern by Schaa et al [4].

Floating-point is the scientific notation format
for binary values. It allows for very large and
very small numbers to be represented with
one data type. A number is represented by an
exponent and a mantissa, usually normalized.

Discover where differences arise in scientific codes between CPU and
GPU implementations and evaluate the effects on performance and
accuracy.

Many scientists do not thoroughly debug their code or compare results
between GPU and CPU due to the assumption that results will differ on
different platforms. Our research shows that comparing the results
helps to debug both CPU code and GPU code. By understanding the
sources of differences, errors can be corrected. In the medical
reconstruction code we studied, all differences were removed and a bug
was fixed in the CPU version of the code.

[1] Devon Yablonski, “Numerical Accuracy Differences in CPU and GPGPU Codes” MS Thesis Northeastern Uni. Sept. 2011.

 Devon Yablonski Miriam Leeser

 Mercury Computer Systems, Chelmsford, MA. dyablons@mc.com Northeastern University, Boston, MA. mel@coe.neu.edu

Debugging Floating Point Implementations on GPUs

Goal

• We match the GPU code to the CPU code in single and double
precision. Each change lowers total number of differences shown in
Fig. 11.

• We created GPU code that produces identical results to the CPU
code.

• Provide better debugging tools for floating point implementations
on GPUs.

Common sources of differences between GPU and CPU code

• Reordering of instructions: Floating-point is not associative
• Implementation of instructions

• Fused Multiply Add is implemented in NVIDIA compute capability
2.0 and above, not (currently) in x86 CPUs

• Choices made by the compiler:
• Fusing mult-add and reordering instructions are examples

How to identify differences and debug your code:

• Compare intermediate results and identify where the divergence
occurs.

Double precision does not fix the problems! It only makes them
less apparent, which makes them harder to recognize.
Single precision is used for scientifically important code, even though
NVIDIA assumes it is not -- scientists analyze range of values.

Myths about Debugging Scientific Code

What is Floating-point?

Test Example - Tomosynthesis

Differences Between GPU and CPU code

Performance

Compiler Induced Differences Fixed-point to Floating-point Boundaries

Future Work

CPU GPU

Example Equation Device Result

1151 * 2.12221 + 221.99993
CPU 2220.663818

GPU 2220.663574

%f1 = test2 %f2 = test3 %f3 = test1

mad.f32 %f4, %f2, %f3, %f1;

Pseudo-Code
float result = test1 * test2 + test3

GPU PTX

 -12(%rbp) = test1 -8(%rbp) = test2 -4(%rbp) = test3

mulss -12(%rbp), -4(%rbp)
addss -8(%rbp), -4(%rbp)

CPU x86

Example Equation Device Instruction Result

CPU divss-40(%rbp), %xmm0 262.549377

GPU div.full.f32 %f3, %f1, %f2; 262.549407

Matlab Extended Precision vpa(5.00/0.0190440360456705, 30) 262.5493875…

Implementation Time Speedup

CPU
Intel XEON W3580 @ 3.33GHz 29min 47s -

GPU
NVIDIA C1060

19s 97x

Fig. 9: Result from a test
dataset used for this work

Fig. 8: 15 X-Rays scan the subject

Table 2: Code Performance* for 8 iterations of Tomosynthesis

Fig. 1: Example of 12 bit floating-point. Our work uses 32 and 64 bit floatiing-point

Fig. 2: Instruction level (IL) MAD code. PTX is GPU IL code.

Table 1: CPU and GPU results from a simple floating-point division

GPU
float NegFloat = -69.235
unsigned short ShortResult = (unsigned short) NegFloat

ShortResult = 0

CPU
float NegFloat = -69.235
Unsigned short ShortResult = (unsigned short) NegFloat

ShortResult = 65467

BEST
Float NegFloat = -69.235

CPU: unsigned short ShortResult = (unsigned short) (long) NegFloat
GPU: unsigned short ShortResult = (unsigned short)__float2int_rn(NegFloat)

ShortResult = 0

Fig. 7: Casting, GPU vs. CPU

* These results are based on our test setup and may differ
from published results of Schaa et al.

[1] "IEEE Std 754-2008," IEEE Std 754-2008, pp. 1-58, 29 August 2008.
[2] N. Whitehead, A. Fit-Florea. “Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs”. NVIDIA, 2011.
[3] NVIDIA, “NVIDIA CUDA Programming Guide,” http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
[4] D. Schaa, B. Jang, P. Mistry, R. Dominguez, D. Kaeli, R. Moore, D. B. Kopans, "GPU Acceleration of Iterative Digital Breast Tomosynthesis," GPU Gems 4

Acknowledgement: This work was supported in part by the National Science Foundation
Engineering Research Centers Innovations Program (Award Number EEC-0946463)

This print is
embedded in

the object. If it
can be read in

the image,
Tomosynthesis
was successful.

Manycore introduces new concepts of programming. For
example, accumulating a large number of values on a serial CPU
may involve a serial loop. Once the CPU sum gets large, it does not
have enough precision to reflect the addition of a small value. The
GPU bins its results by doing a reduction - consistently adding
similar sized values. The GPU is faster AND more accurate!

100.0 + .01 + .001 + 0.0001 + 0.00005 + 0.00005

100.01 100.011 100.0111 100.01115 100.01115

CPU Result GPU Result

100.0 + 0.01 + 0.001 + 0.0001 + 0.00005 + 0.00005

100.01 0.0011 0.00010 + +

100.01 0.00120 +

100.01120

Associativity – Accumulation vs. Reduction

Fig. 4: CPU serial addition compared with tree reduce GPU version

18.1

18.2

18.3

18.4

18.5

18.6

Naïve Casting Fix Division Fix MAD Fix

Se
co

n
d

s

Single Precision Performance

80

82

84

86

88

90

92

94

96

98

100

Naïve Casting Fix Division Fix MAD Fix

%
 S

im
ila

ri
ty

 in
 F

in
al

 I
m

ag
e

Single Precision Similarity to CPU

80

82

84

86

88

90

92

94

96

98

100

Naïve Casting Fix Division Fix MAD Fix MAD Fix (No
DIV)

%
 S

im
ila

ri
ty

 in
 F

in
al

 I
m

ag
e

Double Precision Similarity to CPU

40

42

44

46

48

50

52

54

Naïve Casting Fix DIV Fix MAD Fix MAD Fix (No
Div)

Se
co

n
d

s

Double Precision Performance

fma.f32 %f4, %f2, %f3, %f1;

mulss -12(%rbp), -4(%rbp)
addss -8(%rbp), -4(%rbp)

Fig. 3: Instruction level (IL) FMA code. PTX is GPU IL code.

Rounded 1x Rounded 2x!

Fig. 12

Fig. 13: Some fixes hurt performance, some improve it!

Results of CPU and GPU Tomosynthesis

CPU code can be written to achieve similar results
by binning the sum and combining bins at the
last step of the addition.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

static long num_steps = 100000;
void main()
{
 int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;

 for (i=1; i<= num_steps; i++) {
 x=(i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Case Study: Pi

Fig. 5: Pi Calculation Pseudo-code Fig. 6: Pi Calculated Value (per number of steps)

Fig. 10: Image results from CPU and GPU tomosynthesis implementations look nearly identical

Fig. 11: Numerically, the images differ in over 10% of the pixels after 6 iterations of DBT

0

5

10

15

20

25

0

5

10

15

20

25

30

1 2 3 4 5 6

P
e

rc
e

n
t

D
if

fe
re

n
t

M
ill

io
n

s
o

f
P

ix
e

ls
 D

if
fe

re
n

t

DBT Iteration

Pixels Percent Difference

