
 
 

• NVIDIA’s CUDA compiler aggressively combines double 
precision addition and multiplication into  floating point-
multiply-add (FMAD) instructions [3] on GT200 GPU 
hardware. The addition is truncated to be faster on the 
GPU which makes  the CPU more accurate. 
 
 
 
 
 
 

 
 
 
 
 

 
 

• On Fermi, a fused-multiply-add (FMA) is used. The 
addition and multiplication only encounter a single 
rounding. The GPU is more accurate. 
 

 
 
 

 
 

• A common source of errors is the boundary between 
floating and fixed point code.  Floating point values are 
often cast to integers for image display.  Errors are 
easily introduced.  Correct casting should be used.     
 

 
 
 
 
 
 
 

• Different modes of division - The default on compute 
capability 1.3 GPUs  is approximate division in single 
precision. Using default conditions, the CPU is more 
accurate. 

 

 
 
• Digital Breast Tomosynthesis (DBT) is a mammography 

algorithm that creates a 3D image from the data of 15 X-
ray scans to aid in the search for cancerous tissues. 

• Original code was developed by MGH and ported to the 
GPU at Northeastern by Schaa et al [4]. 

 
 
Floating-point is the scientific notation format 
for binary values. It allows for very large and 
very small numbers to be represented with 
one data type.  A number is represented by an 
exponent and a mantissa, usually normalized. 

 
 
Discover where differences arise in scientific codes between CPU and 
GPU implementations and evaluate the effects on performance and 
accuracy. 
 

 
Many scientists do not thoroughly debug their code or compare results 
between GPU and CPU due to the assumption that results will differ on 
different platforms.  Our research shows that comparing the results 
helps to debug both CPU code and GPU code.  By understanding the 
sources of differences, errors can be corrected.  In the medical 
reconstruction code we studied, all differences were removed and a bug 
was fixed in the CPU version of the code. 

[1] Devon Yablonski, “Numerical Accuracy Differences in CPU and GPGPU Codes” MS Thesis Northeastern Uni. Sept.  2011.  
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Debugging Floating Point Implementations on GPUs 

Goal 

 
 

• We match the GPU code to the CPU code in single and double 
precision. Each change lowers total number of differences shown in  
Fig. 11. 
 
 

 
 
 
 
 
 

• We created GPU code that produces identical results to the CPU 
code. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

• Provide better debugging tools for floating point implementations 
on GPUs.  

 

Common sources of differences between GPU and CPU  code 
 

• Reordering of instructions:  Floating-point is not associative 
• Implementation of instructions 

• Fused Multiply Add is implemented in NVIDIA compute capability 
2.0 and above, not (currently) in x86 CPUs  

• Choices made by the compiler:  
• Fusing mult-add and reordering instructions are examples 

How to identify differences and debug your code: 
 

• Compare intermediate results and identify where the divergence 
occurs.   

Double precision does not fix the problems! It only makes them 
less apparent, which makes them harder to recognize. 
Single precision is used for scientifically important code, even though 
NVIDIA assumes it is not  -- scientists analyze range of values. 

 

 

Myths about Debugging Scientific Code  

What is Floating-point? 

Test Example - Tomosynthesis 

Differences Between GPU and CPU code  

Performance 

Compiler Induced Differences Fixed-point to Floating-point Boundaries 

Future Work 

CPU GPU 

Example Equation Device Result 

1151 * 2.12221 + 221.99993  
CPU 2220.663818 

GPU 2220.663574 

%f1 = test2    %f2 = test3    %f3 = test1 
 

mad.f32  %f4, %f2, %f3, %f1; 

 

Pseudo-Code 
float result = test1 * test2 + test3 

GPU PTX 

 -12(%rbp) = test1   -8(%rbp) = test2    -4(%rbp) = test3 
 

mulss  -12(%rbp), -4(%rbp) 
addss  -8(%rbp), -4(%rbp) 

CPU x86 

Example Equation Device Instruction Result 

CPU divss-40(%rbp), %xmm0 262.549377 

GPU div.full.f32 %f3, %f1, %f2; 262.549407 

Matlab Extended Precision vpa(5.00/0.0190440360456705, 30) 262.5493875… 

Implementation Time  Speedup 

CPU 
Intel XEON W3580 @ 3.33GHz 29min 47s - 

GPU 
NVIDIA C1060 

19s 97x 

Fig. 9: Result from a test 
dataset used for this work 

Fig. 8: 15 X-Rays scan the subject 

Table 2: Code Performance* for 8 iterations of Tomosynthesis 

Fig. 1: Example of 12 bit floating-point. Our work uses 32 and 64 bit floatiing-point 

Fig. 2: Instruction level (IL) MAD code.  PTX is GPU IL code. 

Table 1: CPU and GPU results from a simple floating-point division  

GPU 
float NegFloat = -69.235 
unsigned short ShortResult = (unsigned short) NegFloat 

ShortResult = 0 

CPU 
float NegFloat = -69.235 
Unsigned short ShortResult = (unsigned short) NegFloat 

ShortResult = 65467 

BEST 
Float NegFloat = -69.235 

CPU: unsigned short ShortResult = (unsigned short) (long) NegFloat  
GPU: unsigned short ShortResult = (unsigned short)__float2int_rn(NegFloat) 

ShortResult = 0 

Fig. 7: Casting, GPU vs. CPU 

* These results are based on our test setup and may differ 
from published results of Schaa et al. 
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This print is 
embedded in 

the object. If it 
can be read in 

the image, 
Tomosynthesis 
was successful. 

 

 
 

Manycore introduces new concepts of programming. For 
example, accumulating a large number of values on a serial CPU 
may involve a serial loop. Once the CPU sum gets large, it does not 
have enough precision to reflect the addition of a small value. The 
GPU bins its results by doing a reduction - consistently adding 
similar sized values. The GPU is faster AND more accurate! 
 
 
 
 
 
 
 
 
 
 

100.0 + .01 + .001 + 0.0001 + 0.00005 + 0.00005 

100.01 100.011 100.0111 100.01115 100.01115 

CPU Result GPU Result 

100.0 + 0.01 + 0.001 + 0.0001 + 0.00005 + 0.00005 

100.01 0.0011 0.00010 + + 

100.01 0.00120 + 

100.01120 

Associativity – Accumulation vs. Reduction 

Fig. 4: CPU  serial addition compared with tree reduce GPU version 
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Single Precision Similarity to CPU 
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Double Precision Similarity to CPU 
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fma.f32  %f4, %f2, %f3, %f1; 
 

mulss  -12(%rbp), -4(%rbp) 
addss  -8(%rbp), -4(%rbp) 

Fig. 3: Instruction level (IL) FMA code.  PTX is GPU IL code. 

Rounded 1x Rounded 2x! 

Fig. 12 

Fig. 13: Some fixes hurt performance, some improve it! 

Results of CPU and GPU Tomosynthesis 

CPU code can be written to achieve similar results 
by binning the sum and combining bins at the 
last step of the addition. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

static long num_steps = 100000; 
void main() 
{  
 int i;  float x, pi, sum = 0.0; 
  
 step = 1.0/(float) num_steps; 
  
 for (i=1; i<= num_steps; i++) { 
  x=(i-0.5)*step; 
  sum = sum + 4.0/(1.0+x*x); 
 } 
 pi = step * sum; 
} 

Case Study: Pi 

Fig. 5: Pi Calculation Pseudo-code Fig. 6: Pi Calculated Value (per number of steps) 

Fig. 10: Image results from CPU and GPU tomosynthesis implementations look nearly identical 

Fig. 11: Numerically, the images differ in over 10% of the pixels after 6 iterations of DBT  
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