
Introduction to Molecular Dynamics

Simulations

Tyson J. Lipscomb1 and Samuel S. Cho1,2
Wake Forest University

Departments of Computer Science1 and Physics2

GPU-Based Molecular Dynamic Simulations Optimized with

CUDA Data Parallel Primitives (CUDPP) and CURAND Libraries

Computational Challenges GPU Issues and Limitations

GPU-Based Molecular Dynamics Simulations Performances

MD Simulation Bottleneck

• The average protein is ~400 residues in

length. Note: ribosome consists of 10,000+

residues/nucleotides.

• Even in coarse-grained simulations, each

residue (represented by a bead) interacts

with each other.

• At each timestep, the forces acting on each

of the beads must be calculated, which is a

O(N2) calculation that is typically computed

sequentially in traditional CPUs.

Algorithm is Highly Parallelizable

• Each bead’s position, velocity, and force are

independently calculated at each timestep.

• Ideal for parallel computation, e.g., on a

GPU architecture.

Solution: Assign each interaction to its own

individual thread.

Original Algorithm

Memory Footprint

• Larger simulations can require multiple gigabytes of storage.

• Most commercially available GPUs have very limited RAM (~3-6 GB)

 Strategy 1: Move all relevant data transferred to GPU at beginning of

program execution an minimize data transfer back to CPU.

 Strategy 2: Use smallest data types possible; Reduces amount of data

transfer form device’s global to local memory locations by ~75%.

Barrier Synchronization

• Although each individual force calculation is independent, there are

multiple forces acting on a single bead; The assignment of the forces to

each bead requires many dependent, ordered computations.

• Must launch new kernel for each portion of computation, resulting in

the introduction of additional overhead.

• Difficult to fully utilize GPU.

Biomolecular Simulations are

“Molecular Microscopes”

• Lowest energy structure

results in cellular functions.

• Simulations help us

understand how biomolecules

assemble.

Resolutions of Simulations

• There are many classes of

simulations ranging from a

detailed representation to a

coarse representation.

• The more detailed the

representation of the

biomolecule(s) is, the smaller

the timescale of the simulation.

Ribosome:

• A molecular machine whose

function is to synthesize

proteins (Nobel Prize, 2009)

• Composed of protein and RNA

molecules.

Original Neighbor List Algorithm is

Unparallelizable

num_NL = 0;
for(i = 0; i < num_beads; i++)
 if(member_array[i] = TRUE)
 NL[num_NL] = ML[i];
 num_NL++;

Position in Neighbor List dependent

on number already in list

Number of beads in Neighbor List

may change during any iteration

Definition and Background

• Two major classes of interactions to calculate:

 – Bonded: bonds, angles, dihedrals

 • O(N) calculation

 – Nonbonded: Lennard-Jones and Electrostatic

 • O(N2) calculation

 • > 90% of computations in typical MD

 simulation are of nonbonded interactions.

• Neighbor List Algorithm: For each bead, keep track of

close beads and evaluate those interactions only.

• Neighbor List – rij < rl (out of all possible pairs)
• Pair List – rij < rc (subset of Neighbor List only)

• With cutoffs, the computation becomes O(Nrc
3) ~ O(N)

Parallelization of Neighbor List

Sorting Optimizes GPU Utilization

Parallel Algorithm

Step 1: Perform key-value sort on GPU using CUDPP library.

• Member List as keys and Master List as values.

• Groups members of Neighbor List together with others.

• Keys are binary flags, so a 1-bit sort suffices.

Step 2: Perform parallel scan using CUDPP.

• Counts the total number of TRUE values in Member List, determining

how many entries are in Neighbor List.

Step 3: Update Neighbor List to point to the first num_NL values of

Master List.

Improvements
• Reduced data transfers

• Reuse of arrays

• Reduces memory footprint

Problems for Parallelization

• Each iteration is dependent upon the results of previous iterations.

• Threads would be dependent upon each other.

• Cannot parallelize!

GPGPU Libraries Provide Efficient,

Reliable Code
CUDPP
(http://code.google.com/p/thrust/)

• Library of GPU-based implementation of many commonly used parallel

algorithms.

• Used for parallel scan and key-value sorting.

Thrust
(http://code.google.com/p/thrust/)

• High-level, C++ style interface.

• Provides functionality comparable to CUDPP.

Nadathur Satish, Mark Harris, and Michael Garland. "Designing Efficient Sorting Algorithms for Manycore GPUs". In Proceedings of the 23rd IEEE International Parallel & Distributed

Processing Symposium, May 2009.

CURAND
• CUDA random number generation library.

• Provides fast random number generation.

• Very low memory demands

• Only 40 bytes per random generator.

• Other methods require generating and storing arrays of random

numbers.

• Used to generate values for random forces for each bead during every

timestep.

1

2

3
Conclusions

• Molecular dynamics simulations can be highly optimized using NVIDIA’s

CUDA API along with the CUDPP and CURAND GPGPU libraries.

• Though memory transfers can cause severe bottlenecks, compression of data

can significantly reduce overhead.

• Even non-parallel algorithms can be optimized to a high degree by developing

new parallel approaches.

• CUDPP and CURAND libraries provide efficient code that can be quickly and

easily implemented.

• There exists an N-dependent GPU vs. CPU performance speed-up (or –down).

Acknowledgements

• The performance of the GPU-based simulations depends on the

type of GPU.

• The 480/580 GTX are faster than the C2070, but its memory

limits the size of the system one can simulate.

• The simulations performed using the CUDPP libraries with single

precision calculations have a noticeable improvement in performance

compared to double precision.

• With the Thrust libraries, the performanc was ~1/2 for single precision

calculations as compared with the CUDPP libraries.

• The CURAND libraries showed a marked

improvement over the CPU-based implementation

in our simulations.

• With the CUDPP and CURAND libraries, our GPU-based

simulations have approximately ~20x improvement over the

CPU-based implementation.

• The performances of our simulations is clearly N-dependent.

• Wake Forest University Computer Science

Graduate Fellowship for Excellence

• NVIDIA Academic Partnership

• Wake Forest University Science Research Fund

(Hyeon and Thirumalai, Biophys. J. 2006)

GPU-Based Simulations
with CUDPP + CURAND

Single vs. Double Precision

GPU Hardware Dependence CURAND Performance

tRNAphe

76 Beads
16s

1530 Beads

30s
3883 Beads

50s
6336 Beads

70s
10219 Beads tRNAphe

76 Beads
16s

1530 Beads

30s
3883 Beads

50s
6336 Beads

70s
10219 Beads

tRNAphe

76 Beads
16s

1530 Beads
30s

3883 Beads
50s

6336 Beads
70s

10219 Beads

tRNAphe

76 Beads
16s

1530 Beads
30s

3883 Beads
50s

6336 Beads
70s

10219 Beads

