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GPU-Based Molecular Dynamic Simulations Optimized with  

CUDA Data Parallel Primitives (CUDPP) and CURAND Libraries 

Computational Challenges GPU Issues and Limitations 

GPU-Based Molecular Dynamics Simulations Performances 

MD Simulation Bottleneck 

• The average protein is ~400 residues in 

length.  Note: ribosome consists of 10,000+ 

residues/nucleotides. 

• Even in coarse-grained simulations, each 

residue (represented by a bead) interacts 

with each other. 

• At each timestep, the forces acting on each 

of the beads must be calculated, which is a 

O(N2) calculation that is typically computed 

sequentially in traditional CPUs. 

 

 

Algorithm is Highly Parallelizable 

• Each bead’s position, velocity, and force are 

independently calculated at each timestep. 

• Ideal for parallel computation, e.g., on a 

GPU architecture. 

 

 

Solution: Assign each interaction to its own 

individual thread. 

Original Algorithm 

Memory Footprint 

• Larger simulations can require multiple gigabytes of storage. 

• Most commercially available GPUs have very limited RAM (~3-6 GB) 

 Strategy 1: Move all relevant data transferred to GPU at beginning of 

program execution an minimize data transfer back to CPU. 

 Strategy 2: Use smallest data types possible; Reduces amount of data 

transfer form device’s global to local memory locations by ~75%. 

 

 

 

 

 

 

Barrier Synchronization 

• Although each individual force calculation is independent, there are 

multiple forces acting on a single bead; The assignment of the forces to 

each bead requires many dependent, ordered computations. 

• Must launch new kernel for each portion of computation, resulting in 

the introduction of additional overhead. 

• Difficult to fully utilize GPU. 

Biomolecular Simulations are 

“Molecular Microscopes” 

• Lowest energy structure 

results in cellular functions. 

• Simulations help us 

understand how biomolecules 

assemble. 

 

 

Resolutions of Simulations 

• There are many classes of 

simulations ranging from a 

detailed representation to a 

coarse representation. 

• The more detailed the 

representation of the 

biomolecule(s) is, the smaller 

the timescale of the simulation.  

 

 

Ribosome:  

• A molecular machine whose 

function is to synthesize 

proteins (Nobel Prize, 2009) 

• Composed of protein and RNA 

molecules. 

Original Neighbor List Algorithm is 

Unparallelizable 

num_NL = 0; 
for(i = 0; i < num_beads; i++) 
 if(member_array[i] = TRUE) 
  NL[num_NL] = ML[i]; 
  num_NL++;  

Position in Neighbor List dependent 

on number already in list 

Number of beads in Neighbor List 

may change during any iteration  

Definition and Background 

• Two major classes of interactions to calculate: 

      – Bonded: bonds, angles, dihedrals 

 • O(N) calculation 

      – Nonbonded: Lennard-Jones and Electrostatic 

 • O(N2) calculation 

 • > 90% of computations in typical MD 

 simulation are of nonbonded interactions. 

  

• Neighbor List Algorithm: For each bead, keep track of 

close beads and evaluate those interactions only. 

• Neighbor List – rij < rl (out of all possible pairs) 
• Pair List – rij < rc (subset of Neighbor List only) 

• With cutoffs, the computation becomes O(Nrc
3) ~ O(N) 

Parallelization of Neighbor List 

Sorting Optimizes GPU Utilization 

Parallel Algorithm 

Step 1: Perform key-value sort on GPU using CUDPP library. 

• Member List as keys and Master List as values. 

• Groups members of Neighbor List together with others. 

• Keys are binary flags, so a 1-bit sort suffices. 

 

Step 2: Perform parallel scan using CUDPP. 

• Counts the total number of TRUE values in Member List, determining 

how many entries are in Neighbor List. 

 

Step 3: Update Neighbor List to point to the first num_NL values of 

Master List. 

Improvements 
• Reduced data transfers 

• Reuse of arrays 

• Reduces memory footprint 

Problems for Parallelization 

• Each iteration is dependent upon the results of previous iterations. 

• Threads would be dependent upon each other. 

• Cannot parallelize! 

GPGPU Libraries Provide Efficient, 

Reliable Code 
CUDPP 
(http://code.google.com/p/thrust/) 

• Library of GPU-based implementation of many commonly used parallel 

algorithms.  

• Used for parallel scan and key-value sorting. 

Thrust 
(http://code.google.com/p/thrust/) 

• High-level, C++ style interface. 

• Provides functionality comparable to CUDPP. 
 

 

Nadathur Satish, Mark Harris, and Michael Garland. "Designing Efficient Sorting Algorithms for Manycore GPUs". In Proceedings of the 23rd IEEE International Parallel & Distributed 

Processing Symposium, May 2009. 

 

CURAND 
• CUDA random number generation library. 

• Provides fast random number generation. 

• Very low memory demands 

• Only 40 bytes per random generator. 

• Other methods require generating and storing arrays of random 

numbers. 

• Used to generate values for random forces for each bead during every 

timestep. 
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Conclusions 

• Molecular dynamics simulations can be highly optimized using NVIDIA’s 

CUDA API along with the CUDPP and CURAND GPGPU libraries. 

• Though memory transfers can cause severe bottlenecks, compression of data 

can significantly reduce overhead. 

• Even non-parallel algorithms can be optimized to a high degree by developing 

new parallel approaches. 

• CUDPP and CURAND libraries provide efficient code that can be quickly and 

easily implemented. 

• There exists an N-dependent GPU vs. CPU performance speed-up (or –down). 
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