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OpenCV History

• Original goal:

– Accelerate the field by lowering the bar to computer vision

– Find compelling uses for the increasing MIPS out in the market

• Staffing:

– Climbed in 1999 to average 7 first couple of years

– Little development from 2002 – 2008

– Willow entered in 2008 to accelerate development, NVIDIA joined in 2010

– 8 full time professional developers, 3 of them dedicated to GPU



OpenCV Functionality Overview
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OpenCV Architecture and Development
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OpenCV License

Based on BSD license

� Free for commercial and research use

� Does not force your code to be open

� You need not contribute back� You need not contribute back

— We hope you will contribute back!
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Projects Using OpenCV
� Google Maps, Google street view, Google Earth

� Academic and Industry Research

� Security systems

� Image retrieval

� Video search� Video search

� Machine vision factory production systems

� Structure from motion in movies

� Robotics
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OpenCV GPU Module

Motivation:

�Many computer vision tasks are inherently parallel

�GPUs provide cheap computational power�GPUs provide cheap computational power
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OpenCV GPU Module

Goals:

� Provide developers with a convenient computer vision framework on 
the GPU

� Maintain conceptual consistency with the current CPU functionality

� Achieve the best performance with GPUs

— Efficient kernels tuned for modern architectures

— Optimized dataflows (asynchronous execution, copy overlaps, zero-copy)
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OpenCV GPU Module Contents

� Image processing building blocks:

Color 

conversions

Geometrical 

transforms

Per-element 

operations

Integrals, 

reductions

Template 

matching
Filtering 

engine

Feature 

detectors

� High-level algorithms:
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OpenCV GPU: Histogram of Oriented Gradients

� Used for pedestrian 

detection

� Speed-up ~ 8××××
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OpenCV GPU: Speeded Up Robust Features
� SURF (12××××)

� Bruteforce matcher

— K-Nearest search (20-30××××)

— In radius search (3-5××××)— In radius search (3-5××××)
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OpenCV GPU: Stereo Vision

� Stereo Block Matching (7××××)

— Can run Full HD real-time on Dual-GPU

� Hierarchical Dense Stereo

GPU 
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L
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H
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GPU 
� Hierarchical Dense Stereo

— Belief Propagation (20××××)

— Constant space BP (50-100××××)
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OpenCV GPU: Viola-Jones Cascade Classifier

� Used for face detection 

� Speed-up ~ 6××××

� Based on NCV classes (NVIDIA 
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� Based on NCV classes (NVIDIA 

implementation)



OpenCV with Multiple GPUs
� Algorithms designed with single GPU in mind

� You can split workload manually in slices:

— Stereo Block Matching (dual-GPU speedup ~ 1.8××××)

— Multi-scale pedestrian detection: linear speed-up (scale-parallel)
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OpenCV and NPP

� NPP is NVIDIA Performance Primitives library of signal and image processing 

functions (similar to Intel IPP)

� GPU module uses NPP whenever possible

— Highly optimized implementations for all supported NVIDIA architectures and OS— Highly optimized implementations for all supported NVIDIA architectures and OS

— Part of CUDA Toolkit – no additional dependencies

� NVIDIA will continue adding new primitives

— Several hundred primitives added every CUDA release

— If you feel like your function could be a primitive – go ahead and add it to 

NPP_staging! (part of NCV in OpenCV GPU module)
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OpenCV GPU Module Usage

� Prerequisites:

— Get sources from the website             
http://opencv.willowgarage.com/wiki/InstallGuide

— CMake

— NVIDIA Display Driver

— NVIDIA GPU Computing Toolkit (for CUDA)

� Build OpenCV with CUDA support

� #include <opencv2/gpu/gpu.hpp>
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OpenCV GPU Data Structures
� Class GpuMat

— For storing 2D image in GPU 

memory, just like class cv::Mat

— Reference counting

� Class CudaMem

// class GpuMat

GpuMat(Size size, int type);

GpuMat(const GpuMat& m);

explicit GpuMat (const Mat& m);

GpuMat& operator = (const GpuMat& m);

GpuMat& operator = (const Mat& m);

void upload(const Mat& m);

void upload(const CudaMem& m, Stream& stream);

void download(Mat& m) const;

� Class CudaMem

— For pinned memory support

— Can be transformed into cv::Mat 

or cv::gpu::GpuMat

� Class Stream

— Overloads with extra Stream 

parameter
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void download(Mat& m) const;

void download(CudaMem& m, Stream& stream) const;

// class Stream

bool queryIfComplete();  

void waitForCompletion();     

void enqueueDownload(const GpuMat& src, Mat& dst);

void enqueueUpload(const Mat& src, GpuMat& dst);

void enqueueCopy(const GpuMat& src, GpuMat& dst);



OpenCV GPU Module Example
Mat frame;

VideoCapture capture(camera);

cv::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor::

getDefaultPeopleDetectorector());

capture >> frame;

Mat frame;

VideoCapture capture(camera);

cv::gpu::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor::

getDefaultPeopleDetectorector());

capture >> frame;

GpuMat gpu_frame;

gpu_frame.upload(frame);
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vector<Rect> found;

hog.detectMultiScale(frame, found,

1.4,  Size(8, 8), Size(0, 0), 1.05, 8);

gpu_frame.upload(frame);

vector<Rect> found;

hog.detectMultiScale(gpu_frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);



OpenCV GPU Module Performance

Tesla C2050 (Fermi) vs. Core i5-760 2.8GHz 

(4 cores, TBB, SSE)

— Average speedup with GPU: 33.98××××

What can you get from your computer?

— opencv\samples\gpu\perfomance

— 839 tests for 79 functions
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OpenCV GPU Demo Pack

� Contains demos for high-level GPU algorithms:

— Face detection (6x)
— Keypoint detection (12x) / Point matching (20-30x)

— Pedestrian detection (8x)— Pedestrian detection (8x)
— Image Stitching

— Optical flow

— Stereo matching (7x/20x/50x)

http://sourceforge.net/projects/opencvlibrary/



OpenCV Stitching Module

� Automatic stitching photos taken from the same point

— Cylindrical, spherical or planar panoramas

— Multi-band blending technique

— Smart seam estimation (graph cut based approach)

— GPU acceleration for the most time-consuming steps— GPU acceleration for the most time-consuming steps
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Auto calibration

� Rotation camera movement model

— Requires all photos to  be taken from approximately the same 
position

— A few tens of images are recommended for accurate work

—Works without an initial guess of camera intrinsic parameters—Works without an initial guess of camera intrinsic parameters

Applications: stitching, augmented reality and many other



Auto calibration sample images



� Relative errors:

Auto calibration
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OpenCV Needs Your Feedback!

� Help us set development priorities

— Which OpenCV functions do you use?

— Which are the most painful and time-consuming today?

� The more information you can provide about your end 

application, the better

� Feature request/feedback form on OpenCV Wiki:

http://opencv.willowgarage.com/wiki/OpenCV_GPU
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GPU Face Detection: Motivation

� One of the first Computer Vision problems

� Soul of Human-Computer interaction

� Smart applications in real life

29



GPU Face Detection: Problem

� Locate all upright frontal faces:

�Where face detection does not work:�Where face detection does not work:
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GPU Face Detection: Approaches

Viola-Jones Haar classifiers framework:

Basic idea: reject most non-face regions on early stages
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Classifiers Cascade Explained

� White points represent face windows passed through the 1,2,3,6, 
and 20 classifier stages

�Time for CUDA to step in! (Parallel windows processing)
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GPU Face Detection: Haar Classifier

Each stage comprises a strong classifier:

e
s N

o
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Haar Features Explained
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Most representative Haar features for Face Detection



� Each Integral Image “pixel” contains the sum of all pixels of 
the original image to the left and top

Integral Image Explained

� Calculation of sum of pixels in a rectangle can be done in 4 
accesses to the integral image
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Integral Images with CUDA

Algorithm:

� Integrate image rows

� Integrate image columns

Known as Parallel Scan (one CUDA thread per element):

� Input:

� Output:
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Scan Sample: 8 Numbers

1 1 1 1 1 1 1 1

Legend

⊕⊕⊕⊕
set
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Scan Sample: 8 Numbers

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1
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Scan Sample: 8 Numbers
Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Scan Sample: 8 Numbers
Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Scan Sample: 8 Numbers
Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Scan Sample: 8 Numbers

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1
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GPU Face Detection

Ncv-fd.wmv



GPU Face Detection Performance
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OpenCV NCV Framework

Features:

� Native and Stack GPU memory allocators

� Protected allocations (fail-safety)

� Containers: NCVMatrix, NCVVector� Containers: NCVMatrix, NCVVector

� Runtime C++ template dispatcher

� NPP_staging – a place for missing NPP functions

— Integral images

— Mean and StdDev calculation

— Vector compaction
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OpenCV NCV Haar Cascade Classifiers

Haar Object Detection from OpenCV GPU module:

� Implemented on top of NCV

� Uses NPP with extensions (NPP_staging)

� Not only faces!� Not only faces!

� Suitable for production applications

— Reliable (fail-safe)

— Largest Object mode (up to 200 fps)

— All Objects mode
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Pedestrian Detection

� HOG descriptor

— Introduced by Navneet Dalal and Bill Triggs

— Feature vectors are compatible with the 

INRIA Object Detection and Localization Toolkit 

http://pascal.inrialpes.fr/soft/olt/

INRIA Object Detection and Localization Toolkit 

http://pascal.inrialpes.fr/soft/olt/
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Pedestrian Detection: HOG Descriptor

� Object shape is characterized by 

distributions of:

— Gradient magnitude

— Gradient orientation— Gradient orientation

� Grid of orientation histograms
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Magnitude Orientation



Pedestrian Detection: Working on Image

� Gamma correction

� Gradients calculation

� Sliding window algorithm

� Multi-scale� Multi-scale
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Pedestrian Detection: Inside Window

� Compute histograms inside cells

� Normalize blocks of cells

� One cell may belong to >1 block

� Apply linear SVM classifier

Window descriptor

� Apply linear SVM classifier
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CellsBlocks of cells



Pedestrian Detection: Step 1

� Gamma correction improves 

quality

Gradients 

computation

Block histograms 

calculation

Histograms 

normalization
Linear SVM

quality

� Sobel filter 3x3 by columns and 

rows

� Output: magnitude and angle
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Pedestrian Detection: Step 2

� Big intersection in close positions

� Require window stride to be 

Gradients 

computation

Block histograms 

calculation

Histograms 

normalization
Linear SVM

� Require window stride to be 

multiple of cell size

� Histograms of blocks are 

computed independently
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Pedestrian Detection: Step 2

� Pixels vote in proportion to 

gradient magnitude

Tri-linear interpolation

Gradients 

computation

Block histograms 

calculation

Histograms 

normalization
Linear SVM

� Tri-linear interpolation

— 2 orientation bins

— 4 cells

� Gaussian

— Decreases weight of pixels near 

block boundary
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Pedestrian Detection: Step 3
Gradients 

computation

Block histograms 

calculation

Histograms 

normalization
Linear SVM

� Normalization

— L2-Hys norm
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— L2-Hys norm

� L2 norm, clipping, 

normalization

— 2 parallel reductions in 

shared memory



Pedestrian Detection: Step 4
Gradients 

computation

Block histograms 

calculation

Histograms 

normalization
Linear SVM

� Linear SVM

— Classification is just a dot 

product 6%
5%

GPU time, %
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— 1 thread block per window 

position

20%

39%

30%

6%
5%

Gamma + Gradients

Histograms

SVM

Normalize

Other



Pedestrian Detection Performance

� 8×××× times faster!

� Detection rate
25

30

35

40

Core i5 2.8 GHz
TBB, 4 cores

Tesla C2050

FPS

— Same as CPU
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Thank you

CUDA   http://developer.nvidia.com/cuda

OpenCV http://opencv.willowgarage.com/wiki



GPU Technology Conference
Spring 2012 | San Francisco Bay Area

The one event you can’t afford to miss

� Learn about leading-edge advances in GPU computing

� Explore the research as well as the commercial applications

� Discover advances in computational visualization 

� Take a deep dive into parallel programming

Ways to participate

� Speak – share your work and gain exposure as a thought leader

� Register – learn from the experts and network with your peers

� Exhibit/Sponsor – promote your company as a key player in the GPU ecosystem

www.gputechconf.com


