
Computer Vision on the GPU with Computer Vision on the GPU with
OpenCVOpenCVOpenCVOpenCV

JamesJames FungFung
NVIDIA Developer TechnologyNVIDIA Developer Technology

Outline

� Introduction into OpenCV

� OpenCV GPU module

� Face Detection on GPU

� Pedestrian detection on GPU� Pedestrian detection on GPU

2

OpenCV History

• Original goal:

– Accelerate the field by lowering the bar to computer vision

– Find compelling uses for the increasing MIPS out in the market

• Staffing:

– Climbed in 1999 to average 7 first couple of years

– Little development from 2002 – 2008

– Willow entered in 2008 to accelerate development, NVIDIA joined in 2010

– 8 full time professional developers, 3 of them dedicated to GPU

OpenCV Functionality Overview

General Image

Processing

Segmentation Machine

Learning,
Image Pyramids Transforms Fitting

Image processing

Processing Learning,

Detection
Video, Stereo, and 3D

Camera

Calibration

Features Depth Maps Optical Flow Inpainting Tracking

OpenCV Architecture and Development

5

OpenCV License

Based on BSD license

� Free for commercial and research use

� Does not force your code to be open

� You need not contribute back� You need not contribute back

— We hope you will contribute back!

6

Projects Using OpenCV
� Google Maps, Google street view, Google Earth

� Academic and Industry Research

� Security systems

� Image retrieval

� Video search� Video search

� Machine vision factory production systems

� Structure from motion in movies

� Robotics

7

Outline

� Introduction into OpenCV

� OpenCV GPU module

� Face Detection on GPU

� Pedestrian detection on GPU� Pedestrian detection on GPU

8

OpenCV GPU Module

Motivation:

�Many computer vision tasks are inherently parallel

�GPUs provide cheap computational power�GPUs provide cheap computational power

9

OpenCV GPU Module

Goals:

� Provide developers with a convenient computer vision framework on
the GPU

� Maintain conceptual consistency with the current CPU functionality

� Achieve the best performance with GPUs

— Efficient kernels tuned for modern architectures

— Optimized dataflows (asynchronous execution, copy overlaps, zero-copy)

10

OpenCV GPU Module Contents

� Image processing building blocks:

Color

conversions

Geometrical

transforms

Per-element

operations

Integrals,

reductions

Template

matching
Filtering

engine

Feature

detectors

� High-level algorithms:

11

matching engine detectors

Stereo matching Face detection SURF

OpenCV GPU: Histogram of Oriented Gradients

� Used for pedestrian

detection

� Speed-up ~ 8××××

12

OpenCV GPU: Speeded Up Robust Features
� SURF (12××××)

� Bruteforce matcher

— K-Nearest search (20-30××××)

— In radius search (3-5××××)— In radius search (3-5××××)

13

OpenCV GPU: Stereo Vision

� Stereo Block Matching (7××××)

— Can run Full HD real-time on Dual-GPU

� Hierarchical Dense Stereo

GPU

BM

F
U
L
L

H
D

GPU
� Hierarchical Dense Stereo

— Belief Propagation (20××××)

— Constant space BP (50-100××××)

14

CPU

BM

F
U
L
L

H
D

F
U
L
L

H
D

GPU

CSBP

OpenCV GPU: Viola-Jones Cascade Classifier

� Used for face detection

� Speed-up ~ 6××××

� Based on NCV classes (NVIDIA

15

� Based on NCV classes (NVIDIA

implementation)

OpenCV with Multiple GPUs
� Algorithms designed with single GPU in mind

� You can split workload manually in slices:

— Stereo Block Matching (dual-GPU speedup ~ 1.8××××)

— Multi-scale pedestrian detection: linear speed-up (scale-parallel)

16

OpenCV and NPP

� NPP is NVIDIA Performance Primitives library of signal and image processing

functions (similar to Intel IPP)

� GPU module uses NPP whenever possible

— Highly optimized implementations for all supported NVIDIA architectures and OS— Highly optimized implementations for all supported NVIDIA architectures and OS

— Part of CUDA Toolkit – no additional dependencies

� NVIDIA will continue adding new primitives

— Several hundred primitives added every CUDA release

— If you feel like your function could be a primitive – go ahead and add it to

NPP_staging! (part of NCV in OpenCV GPU module)

17

OpenCV GPU Module Usage

� Prerequisites:

— Get sources from the website
http://opencv.willowgarage.com/wiki/InstallGuide

— CMake

— NVIDIA Display Driver

— NVIDIA GPU Computing Toolkit (for CUDA)

� Build OpenCV with CUDA support

� #include <opencv2/gpu/gpu.hpp>

18

OpenCV GPU Data Structures
� Class GpuMat

— For storing 2D image in GPU

memory, just like class cv::Mat

— Reference counting

� Class CudaMem

// class GpuMat

GpuMat(Size size, int type);

GpuMat(const GpuMat& m);

explicit GpuMat (const Mat& m);

GpuMat& operator = (const GpuMat& m);

GpuMat& operator = (const Mat& m);

void upload(const Mat& m);

void upload(const CudaMem& m, Stream& stream);

void download(Mat& m) const;

� Class CudaMem

— For pinned memory support

— Can be transformed into cv::Mat

or cv::gpu::GpuMat

� Class Stream

— Overloads with extra Stream

parameter
19

void download(Mat& m) const;

void download(CudaMem& m, Stream& stream) const;

// class Stream

bool queryIfComplete();

void waitForCompletion();

void enqueueDownload(const GpuMat& src, Mat& dst);

void enqueueUpload(const Mat& src, GpuMat& dst);

void enqueueCopy(const GpuMat& src, GpuMat& dst);

OpenCV GPU Module Example
Mat frame;

VideoCapture capture(camera);

cv::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor::

getDefaultPeopleDetectorector());

capture >> frame;

Mat frame;

VideoCapture capture(camera);

cv::gpu::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor::

getDefaultPeopleDetectorector());

capture >> frame;

GpuMat gpu_frame;

gpu_frame.upload(frame);

20

vector<Rect> found;

hog.detectMultiScale(frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);

gpu_frame.upload(frame);

vector<Rect> found;

hog.detectMultiScale(gpu_frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);

OpenCV GPU Module Performance

Tesla C2050 (Fermi) vs. Core i5-760 2.8GHz

(4 cores, TBB, SSE)

— Average speedup with GPU: 33.98××××

What can you get from your computer?

— opencv\samples\gpu\perfomance

— 839 tests for 79 functions

21

OpenCV GPU Demo Pack

� Contains demos for high-level GPU algorithms:

— Face detection (6x)
— Keypoint detection (12x) / Point matching (20-30x)

— Pedestrian detection (8x)— Pedestrian detection (8x)
— Image Stitching

— Optical flow

— Stereo matching (7x/20x/50x)

http://sourceforge.net/projects/opencvlibrary/

OpenCV Stitching Module

� Automatic stitching photos taken from the same point

— Cylindrical, spherical or planar panoramas

— Multi-band blending technique

— Smart seam estimation (graph cut based approach)

— GPU acceleration for the most time-consuming steps— GPU acceleration for the most time-consuming steps

23

Auto calibration

� Rotation camera movement model

— Requires all photos to be taken from approximately the same
position

— A few tens of images are recommended for accurate work

—Works without an initial guess of camera intrinsic parameters—Works without an initial guess of camera intrinsic parameters

Applications: stitching, augmented reality and many other

Auto calibration sample images

� Relative errors:

Auto calibration

8.00%

10.00%

12.00%

Dataset 1

12.00%

14.00%

16.00%

18.00%

Dataset 2

5 20 40 60 80

0.00%

2.00%

4.00%

6.00%

8.00%

number of images

re
la

ti
v

e
 e

rr
o

r

focal x focal y principal point x principal point y

2 5 10 20 30 40 50 60

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

number of images

re
la

ti
v

e
 e

rr
o

r

focal x focal y principal point x principal point y

OpenCV Needs Your Feedback!

� Help us set development priorities

— Which OpenCV functions do you use?

— Which are the most painful and time-consuming today?

� The more information you can provide about your end

application, the better

� Feature request/feedback form on OpenCV Wiki:

http://opencv.willowgarage.com/wiki/OpenCV_GPU

27

Outline

� Introduction into OpenCV

� OpenCV GPU module

� Face Detection on GPU

� Pedestrian detection on GPU� Pedestrian detection on GPU

28

GPU Face Detection: Motivation

� One of the first Computer Vision problems

� Soul of Human-Computer interaction

� Smart applications in real life

29

GPU Face Detection: Problem

� Locate all upright frontal faces:

�Where face detection does not work:�Where face detection does not work:

30

GPU Face Detection: Approaches

Viola-Jones Haar classifiers framework:

Basic idea: reject most non-face regions on early stages

31

Classifiers Cascade Explained

� White points represent face windows passed through the 1,2,3,6,
and 20 classifier stages

�Time for CUDA to step in! (Parallel windows processing)
32

GPU Face Detection: Haar Classifier

Each stage comprises a strong classifier:

e
s N

o

33

Y
e
s N

o

Haar Features Explained

34

Most representative Haar features for Face Detection

� Each Integral Image “pixel” contains the sum of all pixels of
the original image to the left and top

Integral Image Explained

� Calculation of sum of pixels in a rectangle can be done in 4
accesses to the integral image

35

Integral Images with CUDA

Algorithm:

� Integrate image rows

� Integrate image columns

Known as Parallel Scan (one CUDA thread per element):

� Input:

� Output:

36

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

Scan Sample: 8 Numbers

1 1 1 1 1 1 1 1

Legend

⊕⊕⊕⊕
set

37

Scan Sample: 8 Numbers

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

38

Scan Sample: 8 Numbers
Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

39

0 0 0 0 0 0 0 1 2 2 2 2 2 2 2

Scan Sample: 8 Numbers
Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

40

0 0 0 0 0 0 0 1 2 3 4 4 4 4 4

0 0 0 0 0 0 0 1 2 2 2 2 2 2 2

Scan Sample: 8 Numbers
Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

41

0 0 0 0 0 0 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 2 3 4 4 4 4 4

Scan Sample: 8 Numbers

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Legend

⊕⊕⊕⊕
set1 1 1 1 1 1 1 1

42

0 0 0 0 0 0 0 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 2 3 4 4 4 4 4

0 0 0 0 0 0 0 1 2 3 4 5 6 7 8

GPU Face Detection

Ncv-fd.wmv

GPU Face Detection Performance

20.00

25.00

30.00

FPS

640x480_VGA

1280x720_HD720p

1920x1080_HD1080p

44

0.00

5.00

10.00

15.00

GeForce 9800 GTX+ Intel Core2 Duo
2.00GHz

Intel Core2 Duo
3.00GHz

Intel Core i7 965
3.20GHz

GeForce GTX 260 GeForce GTX 480

OpenCV NCV Framework

Features:

� Native and Stack GPU memory allocators

� Protected allocations (fail-safety)

� Containers: NCVMatrix, NCVVector� Containers: NCVMatrix, NCVVector

� Runtime C++ template dispatcher

� NPP_staging – a place for missing NPP functions

— Integral images

— Mean and StdDev calculation

— Vector compaction
45

OpenCV NCV Haar Cascade Classifiers

Haar Object Detection from OpenCV GPU module:

� Implemented on top of NCV

� Uses NPP with extensions (NPP_staging)

� Not only faces!� Not only faces!

� Suitable for production applications

— Reliable (fail-safe)

— Largest Object mode (up to 200 fps)

— All Objects mode

46

Outline

� Introduction into OpenCV

� OpenCV GPU module

� Face Detection on GPU

� Pedestrian detection on GPU� Pedestrian detection on GPU

47

Pedestrian Detection

� HOG descriptor

— Introduced by Navneet Dalal and Bill Triggs

— Feature vectors are compatible with the

INRIA Object Detection and Localization Toolkit

http://pascal.inrialpes.fr/soft/olt/

INRIA Object Detection and Localization Toolkit

http://pascal.inrialpes.fr/soft/olt/

48

Pedestrian Detection: HOG Descriptor

� Object shape is characterized by

distributions of:

— Gradient magnitude

— Gradient orientation— Gradient orientation

� Grid of orientation histograms

49

Magnitude Orientation

Pedestrian Detection: Working on Image

� Gamma correction

� Gradients calculation

� Sliding window algorithm

� Multi-scale� Multi-scale

50

Pedestrian Detection: Inside Window

� Compute histograms inside cells

� Normalize blocks of cells

� One cell may belong to >1 block

� Apply linear SVM classifier

Window descriptor

� Apply linear SVM classifier

51

CellsBlocks of cells

Pedestrian Detection: Step 1

� Gamma correction improves

quality

Gradients

computation

Block histograms

calculation

Histograms

normalization
Linear SVM

quality

� Sobel filter 3x3 by columns and

rows

� Output: magnitude and angle

52

Pedestrian Detection: Step 2

� Big intersection in close positions

� Require window stride to be

Gradients

computation

Block histograms

calculation

Histograms

normalization
Linear SVM

� Require window stride to be

multiple of cell size

� Histograms of blocks are

computed independently

53

Image

Pedestrian Detection: Step 2

� Pixels vote in proportion to

gradient magnitude

Tri-linear interpolation

Gradients

computation

Block histograms

calculation

Histograms

normalization
Linear SVM

� Tri-linear interpolation

— 2 orientation bins

— 4 cells

� Gaussian

— Decreases weight of pixels near

block boundary

54

Pedestrian Detection: Step 3
Gradients

computation

Block histograms

calculation

Histograms

normalization
Linear SVM

� Normalization

— L2-Hys norm

55

— L2-Hys norm

� L2 norm, clipping,

normalization

— 2 parallel reductions in

shared memory

Pedestrian Detection: Step 4
Gradients

computation

Block histograms

calculation

Histograms

normalization
Linear SVM

� Linear SVM

— Classification is just a dot

product 6%
5%

GPU time, %

56

product

— 1 thread block per window

position

20%

39%

30%

6%
5%

Gamma + Gradients

Histograms

SVM

Normalize

Other

Pedestrian Detection Performance

� 8×××× times faster!

� Detection rate
25

30

35

40

Core i5 2.8 GHz
TBB, 4 cores

Tesla C2050

FPS

— Same as CPU

57

0

5

10

15

20

768x576 1536x1152

Tesla C2050

Thank you

CUDA http://developer.nvidia.com/cuda

OpenCV http://opencv.willowgarage.com/wiki

GPU Technology Conference
Spring 2012 | San Francisco Bay Area

The one event you can’t afford to miss

� Learn about leading-edge advances in GPU computing

� Explore the research as well as the commercial applications

� Discover advances in computational visualization

� Take a deep dive into parallel programming

Ways to participate

� Speak – share your work and gain exposure as a thought leader

� Register – learn from the experts and network with your peers

� Exhibit/Sponsor – promote your company as a key player in the GPU ecosystem

www.gputechconf.com

